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Abstract

We investigated the spatial patterns of perennial species (Stipa tenacissima, Anthyllis cytisoides, Globularia
alypum, Brachypodium retusum and chamaephytes) in a 50 m · 50 m semi-arid steppe by using the com-
bination of a linear model of coregionalization (LMC) and sampling units of varying size (1.25 m · 1.25 m,
2.5 m · 2.5 m, and 5 m · 5 m). The data-adjusted LMC showed the patchy structure of the vegetation,
which was especially evident with the highest resolution grid. It also detected a periodic pattern in the
distribution of S. tenacissima, as well as autocorrelation at two spatial scales for A. cytisoides and
G. alypum. The latter species was negatively associated with the other species at both short and long
distances. These negative associations were consistent for all sampling grids and suggest the presence of
interference between G. alypum and the rest of the evaluated species. Despite species-specific differences, the
LMC was fitted satisfactorily to all of them. This suggests a common variation pattern for all the species,
which may be caused by an underlying environmental property driving the patterns of all the species or,
alternatively, by the dominance of some species’ spatial pattern, or another kind of species association, over
the rest. The spatial patterns found were profoundly affected by the observational scale. Our results reveal
that the multivariate geostatistical approach introduced in this paper is a suitable technique for the spatial
analysis of semi-arid plant communities. It allows plant ecologists to evaluate if the species forming the
plant community of interest share a common spatial pattern, and to assess the spatial covariation between
the species forming a plant community at different spatial scales independently.

Introduction

The spatial pattern of a plant community is
determined by a combination of processes that
include soil heterogeneity (Ehrenfeld et al. 1997),

biotic interactions (Callaway 1995), patterns of
growth and seed dispersal (Lechowicz and Bell
1991), microsite availability for seeds (Harper
et al. 1965), and random factors (Halpern 1988).
Despite it is not possible to determine the specific
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processes involved in the creation of a given plant
pattern by looking at its spatial distribution alone
(Shipley and Keddy 1987), spatial pattern analysis
can provide useful information to infer the
underlying formative processes. Thus, it is not
surprising that spatial pattern analysis has received
substantial attention by plant ecologists in the last
decades (Dale 1999), and that numerous methods
for quantifying spatial patterns have been devel-
oped (Perry et al. 2002).

For data collected by means of transects or
contiguous quadrats, the so-called block-variance
methods, in which a measure of variance is plotted
against the block size or the distance between
samples – with the peaks indicating the scale of the
pattern, – have been widely used during decades
(Greig-Smith 1983). When the data are in the form
of spatially referenced individuals, methods such
as Ripley’s K-analysis have often been preferred
(Haase 1995). Although not as popular as those
mentioned above, other methods based on data
autocorrelation have been used to describe the
spatial structure of individual plant species (Verdú
and Garcı́a-Fayos 1998) and communities (Anand
and Kadmon 2000). In the latter case, the most
common approach is to summarize the whole
plant community using ordination techniques, and
then to apply autocorrelation analyses to the
ordination scores. Autocorrelation methods have
rarely been used for direct comparisons of the joint
spatial variation of species within a community.
These analyses can be done with a linear model of
coregionalization (LMC), a multivariate geosta-
tistical technique based on modeling individual
and joint patterns by using a linear combination of
single spatial structures (Goovaerts 1992, 1997;
Webster et al. 1994).

A crucial issue when studying the spatial pat-
terns of ecological phenomena is scale, which
refers primarily to ‘grain’ – the size or spatial
resolution of the sampling unit- and ‘extent’ – the
size of the study area – (Qi and Wu 1996). The
importance of scale in ecological research has been
increasingly emphasized in light of hierarchy the-
ory, which establishes that ecological systems are
complex units consisting of subsystems that are in
turn composed of their own subsystems (Allen and
Star 1982; Levin 1992; Wu and Loucks 1995).
Because loose vertical and horizontal coupling in
structure and function among subsystems, these
can be separated and studied according to their

temporal or spatial scales (or both; Wu 1999).
Another important property of spatial heteroge-
neity, its scale multiplicity in space (e.g., Wu and
Loucks 1995; Werner 1999), implies that the spa-
tial patterns observed in the field and the processes
that promote them are dependent on the scale of
observation (Wu et al. 2000). Studies devoted to
analyze plant spatial patterns typically use an a
priori scale of observation, i.e. a single grain and
extent, which is often pre-set by researchers based
on previous knowledge (Greig-Smith 1983). Such
approach may lead to inappropriate interpreta-
tions when the scale of observation does not
match the relevant scale at which the processes
under study are acting (Wu et al. 2000). The
identification and characterization of spatial pat-
terns across a range of scales is an approach
commonly employed in disciplines like landscape
ecology, geography and remote sensing (Turner
et al. 1989; Qi and Wu 1996; Wu 1999; Wu et al.
2000). However, it has barely been used when
studying plant spatial patterns (but see He et al.
1994 and Bellehumeur et al. 1997), despite it has
often been recommended (Levin 1992) and is
critical to accurately interpret the spatial patterns
observed in the field (Wu et al. 2000; Wu 2004).

In this study we evaluate the spatial pattern of
perennial vegetation in a Stipa tenacissima steppe
at different spatial scales. These steppes constitute
one of the most important vegetation types in the
semi-arid areas of the Mediterranean Basin
(Le Houérou 2001). Vegetation in S. tenacissima
steppes is often structured in a spotted or banded
spatial configuration, and their spatial patterns
resemble those found in semi-arid regions
throughout the globe (Valentin et al. 1999). In
these steppes, plant spatial patterns have a crucial
role in runoff generation and infiltration, soil
stability and nutrient cycling, and thus greatly
affect their composition, function and dynamics
(Puigdefábregas et al. 1999; Maestre and Cortina
2004). Despite its importance, few studies have
explored the spatial pattern of perennial vegeta-
tion in these steppes, especially at the plant com-
munity level (Puigdefábregas and Sánchez 1996;
Maestre and Cortina 2002; Webster and Maestre
2004). The main objectives of this paper were to:
(i) explore the spatial patterns of the dominant
species in a semi-arid S. tenacissima steppe,
(ii) evaluate their joint spatial variation, and
(iii) assess how these patterns are affected by
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changing the scale of observation, i.e. by changing
grain size. To achieve these objectives, we used the
combination of a multivariate geostatistical ap-
proach (LMC) and sampling units of varying size.

Methods

Study area

The study site is a S. tenacissima steppe located
near Aigües de Busot (38�31¢ N, 0�21¢ W, 460 m
above sea level, 12� slope, 160� SE aspect), 35 km
NE of Alicante (SE Spain). The site is represen-
tative of this type of steppes in the western Med-
iterranean, and has been the subject of several
previous studies (e.g., Maestre and Cortina 2002;
Maestre et al. 2002, 2003; Webster and Maestre
2004). The climate is semi-arid, with a mean an-
nual rainfall of 388 mm and a mean annual tem-
perature of 15.8 �C (closest meteorological station:
Relleu, 10 km N). The dry season lasts from May
to September, and there is a large interannual
variation in rainfall amount and concentration.
Soils are loamy-silty loam, Lithic Calciorthid (Soil
Survey Staff 1990). Vegetation is dominated by the
perennial grasses S. tenacissima and Brachypodium
retusum; shrubs like Globularia alypum, Anthyllis
cytisoides and Ephedra fragilis (nomenclature fol-
lowing Mateo and Crespo 1998) are also present.

Field sampling

During spring 1999, one 50 m · 50 m plot was
established in the center of the study area. The
outlines of the canopies of the perennial vegetation
within this plot were established visually and fully
mapped in the field. To reduce errors during
mapping we marked with 1 m-height sticks the
corners of nested subplots of 5 m · 5 m and
1 m · 1 m; the latter were used as reference units
for mapping. To avoid an excessive number of
classes, the chamaephytes (Fumana ericoides,
Fumana thymifolia, Thymus vulgaris, Thymus
moroderi, Teucrium carolipaui and Teucrium
capitatum subsp. gracillinum) were grouped into
one class (thereafter chamaephytes). Field maps of
all the subplots were scanned, assembled into a
continuous map, digitized using Adobe Photoshop
5.0 (Adobe Systems Inc., San José, CA, USA) and

translated into a GIS, the Idrisi system (Clark
University, Worcester, MA, USA). The resulting
map is shown in the Appendix 1.

With the aim of exploring the effect of the scale
of observation on the spatial patterns observed, we
divided the map in quadrats of 1.25 m · 1.25 m,
2.5 m · 2.5 m, and 5 m · 5 m, resulting in sam-
pling square grids of 1600, 400 and 100 quadrats
respectively. Using the GIS we calculated the cover
of each species for each quadrat, and we obtained
the percent cover by dividing the cover area of
each species by the total area of the quadrat. This
was taken as our raw data. In this paper we present
data for S. tenacissima, G. alypum, B. retusum,
A. cytisoides and the chamaephytes, which repre-
sent more than 90% of the total plant cover.

Spatial analysis of individual species

To characterize the spatial pattern of each species
we used the semivariogram. We computed exper-
imental semivariograms according to the usual
estimator (Webster and Oliver 1990):

ĉðhÞ ¼ 1

2NðhÞ
XNðhÞ

i¼1
zðxiÞ � zðxi þ hÞf g2

where z(xi) and z(xi + h) are the observed cover
values of a given species at locations xi and xi + h,
respectively, h is the lag between samples and N(h)
is the number of paired comparisons at lag h. We
used omnidirectional semivariograms ĉðhÞ, func-
tions of the lag distance h = |h|. To allow for
better comparisons of the different species, all the
semivariograms were standardized (Rossi et al.
1992) by dividing each semivariogram value by the
variance at that lag (Pannatier 1997). Although
cover data were positively skewed, exploratory
analysis confirmed that the spatial structure
revealed by the standardized semivariograms did
not show differences from that revealed by more
robust measures of autocorrelation, such as the
madogram (Pannatier 1997) and relative semi-
variograms (Isaaks and Srivatsava 1989).

We fitted two different isotropic models to the
experimental semivariograms according to the
major spatial patterns observed in the data: short-
range autocorrelation or short- and long-range
autocorrelation. To describe the first case we used
a spherical model with a nugget effect (Webster
and Oliver 1990):
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cð0Þ ¼ 0

cðhÞ ¼ C0 þ C
3h

2a
� 1

2

h

a

� �3
( )

for 0 < h � a

cðhÞ ¼ C0 þ C for h > a

where C0 is the nugget – the amount of variance
not accounted for the model due to measurement
error plus residual variation at distances less than
the shortest sampling interval, C is the structural
variance – part of the total variance that can be
attributed to the spatial autocorrelation, and a is
the range, which represents the distance beyond
which samples are spatially independent (Webster
and Oliver 1990). In this model, the sill (the pla-
teau that the variogram reaches at the range) is
C0 + C. When both short and long ranges were
detected in the semivariogram, we fitted a nested
spherical model with a nugget effect (Webster and
Oliver 1990):

cð0Þ ¼ 0

cðhÞ ¼ C0 þ C1

3h

2a1
� 1

2

h

a1

� �3
( )

þ C2

3h

2a2
� 1

2

h

a2

� �3
( )

for 0 < h � a1

cðhÞ ¼ C0 þ C1 þ C2

3h

2a2
� 1

2

h

a2

� �3
( )

for a1 < h � a2

cðhÞ ¼ C0 þ C1 þ C2 for h > a2

where C0 is the nugget, and C1 and C2 indicate the
value of structural variance for the first (a1) and
second (a2) range structures respectively. In this
model the sill is C0 + C1 + C2.

For all the fitted models, we used the proportion
of the model sample variance explained by struc-
tural variance, (C1 + C2)/(C0 + C1 + C2), as a
normalized measure of spatial dependence
(Robertson and Freckman 1995). We computed
experimental semivariograms with Variowin 2.2
(Pannatier 1997). Each semivariogram lag class had
at least 684, 2964 and 9948 pairs of points for the
5 m · 5 m, 2.5 m · 2.5 m, and 1.25 m · 1.25 m
grids, respectively. We fitted all the experimental
semivariograms to spherical and nested-spherical

modes following a weighted least-squares approx-
imation (Cressie 1985). We assigned weights
according to the number of paired comparisons in
the estimates, and selected for each species and
grain size the model with the smallest residual mean
square (Webster and Oliver 1990).

Joint spatial analysis by coregionalization

To explore the spatial covariation between the
species studied we used a LMC, following the
theory presented in Goovaerts (1992) and Webster
et al. (1994). The idea underlying this analysis is
that processes with various spatial structures that
act additively generate the spatial pattern of a
species. It implies that the form of all individual
and cross-semivariograms (see below) is that of a
nested model composed of the same elementary
semivariogram functions, but weighted by specific
components (Goulard and Volz 1992). The LMC
was performed in three steps:

(i) Estimation of the p(p + 1)/2 experimental
individual and cross-semivariograms, where p
is the number of species present in the data. If
the cover of the two species to be compared, u
and v, are denoted as zu(x) and zv (x), the
cross-semivariogram, cuv(h), can be estimated
by the following equation (Webster et al.
1994):

ĉuvðhÞ ¼
1

2NðhÞ
XNðhÞ

i¼1
zuðxiÞ � zuðxi þ hÞf g

� zvðxiÞ � zvðxi þ hÞf g

(ii) Selection of the number and characteristics
(type of function and range) of the basic semi-
variogram functions to be fitted to all individual
and cross-semivariograms. To perform this
selection, we computed semivariograms of the
scores of the leading components of a Principal
Components Analysis (PCA) applied to the
cover values from all species for each of the
three grids under study. The first two axes of
this PCA accounted for 58%, 53% and 50% of
the variation in the data for the 5 m · 5 m,
2.5 m · 2.5 m, and 1.25 m · 1.25 m grids,
respectively. Using these semivariograms, we
modeled the whole set of individual and cross-
semivariograms by using the following nested
spherical model with nugget:
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cuvð0Þ ¼ 0

cuvðhÞ ¼ b1uv þ b2uv
3h

2a1
� 1

2

h

a1

� �3
( )

þ b3uv
3h

2a2
� 1

2

h

a2

� �3
( )

for 0 < h � a1

cuvðhÞ ¼ b1uv þ b2uv

þ b3uv
3h

2a2
� 1

2

h

a2

� �3
( )

for a1 < h � a2

cuvðhÞ ¼ b1uv þ b2uv þ b3uv for h > a2

where a1 and a2 are the first and second ranges
respectively. Using the models fitted to the
scores of the first two components of the PCA
(Table 1), we selected the values of a1 and a2 for
each sampling grid. In these equations, bkuv,
where k = 1, 2 and 3, are coefficients to be
obtained from the data. For each k, the matrix
of the coefficients bkuv is called the coregional-
ization matrix, Bk. The LMC requires these
matrices to be positive semidefinite, i.e. that its
determinant and all its principal minor deter-
minants are non-negative (Goovaerts 1992).

(iii) Fitting the selected model to the experimental
individual and cross-semivariogram values
under the constraint of positive semi-definite-
ness of the matrix of coefficients, Bk. We did it
by using the iterative algorithm described in
Goulard and Volz (1992). This algorithm
starts with a set of initial matrices Bk, and
modify one matrix at a time iteratively so as to
minimize the weighted sum of squares of the
differences between the experimental and
model cross-semivariogram values, under the
constraint that the matrix of the coefficients

is positive semidefinite. Further details on the
procedure, and the complete set of equations
of the algorithm used, can be found in
Goovaerts (1997).

Principal component analyses were performed
with SPSS for Windows 9.0 (SPSS Inc., Chicago,
USA). Cross-semivariograms were computed with
Variowin 2.2 (Pannatier 1997). The selected model
was fitted to cross-semivariograms with a Maple
(Waterloo Maple Inc., Waterloo, Canada) proce-
dure implementing the algorithm of Goulard and
Volz (1992).

Comparison of the spatial patterns between pairs of
species

As a first approach to evaluate the main differ-
ences in pattern relationships between pairs of
species and sampling grids, we computed Pearson
correlation coefficients with cover values. For a
given sampling unit, the sum of specific cover
frequencies cannot exceed the value of 1. Thus,
negative correlations between pairs of species can
be expected, and correlation coefficients must be
interpreted in relative terms by comparing them
with the expected coefficients calculated as a
function of the species cover values. We computed
the expected correlations assuming a Dirichlet
(multivariate Beta) distribution (Kotz et al. 2000),
and we used them as indicator values for com-
parison purposes. The expected correlations were
calculated with the equation:

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pipj
ð1� piÞð1� pjÞ

s

where pi and pj are cover values for the i and j
species respectively.

Table 1. Parameters of the models fitted to the standardized semivariograms of the scores of the first two components of a principal

components analysis (PCA) performed with raw cover values.

Grid PCA Axis Model C0 C1 C2 a1 a2

5 m · 5 m 1 Nested spherical 0.17 0.38 0.57 16.5 30

2 –a – – – – –

2.5 m · 2.5 m 1 Spherical 0.45 0.55 – 6.5 –

2 Spherical 0.49 0.60 – 25 –

1.25 m · 1.25 m 1 Spherical 0.30 0.69 – 4 –

2 Nested spherical 0.36 0.49 0.21 4 29

aThere is no apparent spatial structure at this scale. We could not fit any model. C0 = nugget variance, a1 = first range, a2 = second

range, C1 = structural variance for the first range, C2 = structural variance for the second range.
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A more powerful approach to compare the
spatial patterns of the different species within a
plant community can be obtained with the coreg-
ionalization matrix, Bk. This matrix gives useful
information about the spatial relationships be-
tween the species under study, since it describes
these relationships at the spatial scale defined by
the corresponding basic semivariogram function:
nugget (k = 0), spherical with range a1 (k = 1)
and spherical with range a2 (k = 2). From this
matrix, the structural correlation coefficient (rkuv)
is defined as:

rkuv ¼
bkuvffiffiffiffiffiffiffiffiffiffiffiffi
bkuub

k
vv

q

With rkuv we can distinguish between the corre-
lation structures encountered at each of the dif-
ferent spatial scales of the fitted nested model
(nugget, first and second range) separately, filter-
ing out the structures belonging to other scales of
variation. This facilitates the comparison of the
spatial patterns of the different species. With the
aim of summarizing the relationships between
species, we applied a PCA to the coregionalization
matrices obtained for the three grids under study,
and projected the variables into correlation circles
as explained in Webster et al. (1994). To perform
this, the eigenvectors from the two leading
principal components were converted to the cor-
relations between the original variables and the
principal components with the equation:

ckij ¼ aij

ffiffiffiffiffi
kj

bkii

s

where ckij is the value of the correlation, k refers to
each of the matrices defined in the LMC (nugget,
first and second range), aij is the i th element of the
jth eigenvector, kj is the j th eigenvalue, and bkii is
the k element corresponding to the ith species.
These correlations were plotted in the unit circle in
the plane of the principal components. We applied
the same analysis to the variance–covariance ma-
trix of the original variables. PCA analyses were
performed with SPSS for Windows 9.0 (SPSS Inc.,
Chicago, USA).

Results

The total plant cover of the plot studied was 46%;
it contained 1720 plant patches – spatially discrete

units of the different species – (Appendix 1).
Brachypodium retusum and S. tenacissima were the
dominant species in the community, with cover
values of 17.4% (393 patches) and 16.6% (383
patches), respectively. Globularia alypum had a low
cover value (5.1%), despite it had the highest
number of patches (405). Anthyllis cytisoides had
1.7% of cover and 229 patches. The chamaephytes
were the least represented group on the study site,
with a cover of 0.8% and 141 patches.

The experimental semivariograms revealed a
clear spatial structure for most species and grain
sizes, with G. alypum and the chamaephytes having
the most and the least structured semivariograms,
respectively (Figure 1). The spatial structures of
B. retusum and S. tenacissimawere best captured by
the semivariograms as we moved from the
1.25 m · 1.25 m to the 5 m · 5 m grids. This was
not the case for G. alypum. For this species, reduc-
ing grain size allowed us to detect the presence of a
short range of 3–4 m in the 2.5 m · 2.5 m and
1.25 m · 1.25 m grids, which was not detected in
the 5 m · 5 m grid. The semivariograms for
S. tenacissima showed a clear dip at about 16 m,
especially evident with the 2.5 m · 2.5 m grid. The
models fitted independently to the semivariograms
estimated moderate to high spatial dependence for
S. tenacissima,B. retusum andG. alypum, regardless
of grain size (Table 2). The values of spatial
dependence for the chamaephytes and A. cytisoides
were moderate for the smallest grain size, but they
became substantially reduced or even disappeared
in the largest grain size. For S. tenacissima and
B. retusum, the semivariograms detected similar
patterns, sharing an increase in semivariance with
lag distance up to a range of 4–10 m, depending on
grain size. Globularia alypum showed a strong spa-
tial structure regardless of grain size, with a range
up to 25 m. As with G. alypum, the semivariograms
revealed the presence of a short range in A. cytiso-
ides at the 2.5 m · 2.5 m and 1.25 m · 1.25 m
grids, which was not evident at the 5 m · 5 m one.
This species showed autocorrelation up to 17 m.
The chamaephytes showed a random pattern at the
largest grain size. At higher resolutions, they pre-
sented ranges varying from 5 m to 1 m.

The LMC chosen was well fitted to all the
experimental semivariograms (Figure 1) and cross-
semivariograms (Figures 2, 3 and 4). The negative
relationship between the patterns of S. tenacissima
and B. retusum showed a ‘pure nugget’ effect when
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using the 5 m · 5 m grid (Figure 2); the nugget
component disappeared to zero when using the
1.25 m · 1.25 m grid (Figure 4). This suggests that
the negative correlation structure of these species
was mainly associated to short distances. The
cross-semivariograms between G. alypum and the
remaining species consistently showed strong neg-
ative relationships that increased with distance up
to 16–28 m. On the contrary, the cross-semivario-
grams between A. cytisoides and the remaining

species – except G. alypum – revealed some positive
relationships, mainly with B. retusum at the
5 m · 5 m grid. With this grain size, the sign of the
correlation between the spatial increments in
S. tenacissima and A. cytisoides shifted from the
shortest to the largest distances (Figure 2).

The observed correlations between G. alypum
and the remaining species were more negative than
expected in all the sampling grids (Table 3).
Contrarily, the observed correlations between

Figure 1. Experimental semivariograms (dots) and coregionalization model fitted (solid line) for the three sampling grids. Note that

the models fitted are not those fitted individually to each semivariogram, which are described in Table 2.
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A. cytisoides and B. retusum were less negative
than expected. The structural correlation coeffi-
cients from the coregionalization analysis allowed
us to analyze separately the correlation structure
at each spatial scale, eliminating structures

belonging to other scales of variation (Table 4). At
the large scale (second range), except for the pairs
that included G. alypum, the spatial relationships
between species were very positively correlated.
Thus, correlation circles for the second range, and

Figure 2. Cross-semivariograms (dots) and model fitted (solid line) for the 5 m · 5 m grid.

Table 2. Parameters of the models fitted to the standardized semivariograms of evaluated species.

Species Size of sampling units Model C0 C1 C2 a1 a2 SPD

S. t. 5 m · 5 m Spherical 0.33 0.66 – 9.96 – 66.73

2.5 m · 2.5 m Spherical 0.59 0.41 – 8.28 – 41.00

1.25 m · 1.25 m Spherical 0.57 0.41 – 4.29 – 41.84

G. a. 5 m · 5 m Spherical 0.28 0.87 – 25.20 – 75.65

2.5 m · 2.5 m Nested spherical 0.03 0.53 0.52 4.68 23.40 77.78

1.25 m · 1.25 m Nested spherical 0.33 0.51 0.18 3.30 19.14 67.58

B. r. 5 m · 5 m Spherical 0.06 0.97 – 9.01 – 94.15

2.5 m · 2.5 m Spherical 0.45 0.56 – 7.28 – 54.95

1.25 m · 1.25 m Spherical 0.10 0.90 – 3.96 – 89.88

A. c. 5 m · 5 m Spherical 0.56 0.42 – 17.07 – 42.86

2.5 m · 2.5 m Nested spherical 0.59 0.30 0.11 5.40 15.48 41.04

1.25 m · 1.25 m Nested spherical 0.23 0.73 0.05 2.58 18.48 76.92

C. s. 5 m · 5 m – a – – – – – –

2.5 m · 2.5 m Spherical 0.66 0.35 – 5.35 – 34.43

1.25 m · 1.25 m Spherical 0.31 0.69 – 2.33 – 68.89

aThere is no apparent spatial structure at this scale. We could not fit any model. C0 = nugget variance, a1 = first range, a2 = second

range, C1 = structural variance for the first range, C2 = structural variance for the second range, SPD = spatial dependence (%).

S. t. = Stipa tenacissima, G. a. = Globularia alypum, B. r. = Brachypodium retusum, A. c. = Anthyllis cytisoides, and C. s. =

chamaephytes.
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Figure 4. Cross-semivariograms (dots) and model fitted (solid line) for the 1.25 m · 1.25 m grid.

Figure 3. Cross-semivariograms (dots) and model fitted (solid line) for the 2.5 m · 2.5 m grid.
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also for the total coregionalization matrix clearly
distinguished between G. alypum and the remain-
ing species (Figure 5). At the short scale (first
range), the positive relationships between the
spatial patterns of B. retusum and A. cytisoides
were highlighted, as were the negative relation-
ships between S. tenacissima and B. retusum at the
smallest grain size. The differences between

G. alypum and the remaining species were also
evident at the spatial scale defined by the first
range.

Discussion

Despite the apparent regularity that reportedly
characterizes plant spatial patterns in semi-arid

Table 4. Matrix of structural correlation coefficients for the three sampling grids.

1.25 m · 1.25 m grid 2.5 m · 2.5 m grid 5 m · 5 m grid

G. a. B. r. A. c. C. s. G. a. B. r. A. c. C. s. G. a. B. r. A. c. C. s.

Nugget

Stipa tenacissima �0.167 0.083 �0.081 �0.055 �0.438 �0.256 0.186 �0.100 �0.095 �0.552 �0.362 �0.137
Globularia alypum �0.064 �0.004 0.043 �0.103 �0.103 0.019 �0.096 0.296 �0.172
Brachypodium retusum �0.263 �0.114 �0.332 �0.099 0.031 �0.210
Anthyllis cytisoides �0.060 0.070 �0.169

First range

Stipa tenacissima �0.069 �0.607 �0.240 �0.059 0.276 �0.727 �0.755 �0.172 �0.234 0.588 0.567 0.760

Globularia alypum �0.262 �0.016 �0.172 �0.300 0.243 �0.288 �0.858 �0.527 �0.070
Brachypodium retusum 0.105 �0.091 0.297 �0.135 0.401 0.573

Anthyllis cytisoides 0.097 �0.155 �0.074
Second range

Stipa tenacissima �0.846 0.483 0.898 0.724 �0.913 0.992 0.999 0.724 �0.911 0.643 0.997 0.722

Globularia alypum �0.643 �0.695 �0.619 �0.957 �0.920 �0.381 �0.270 �0.874 � 0.373

Brachypodium retusum 0.414 0.124 0.994 0.633 0.704 0.994

Anthyllis cytisoides 0.374 0.712 0.777

G. a. = Globularia alypum, B. r. = Brachypodium retusum, A. c. = Anthyllis cytisoides, and C. s. = chamaephytes.

Table 3. Matrix of observed and expected correlations.

Globularia alypum Brachypodium retusum Anthyllis cytisoides Chamaephytes

5 m · 5 m grid

Stipa tenacissima �0.375 �0.337 0.064 0.022

Globularia alypum �0.331 �0.295 �0.159
Brachypodium retusum 0.120 �0.091
Anthyllis cytisoides �0.023

2.5 m · 2.5 m grid

Stipa tenacissima �0.270 �0.367 �0.012 �0.073
Globularia alypum �0.267 �0.137 �0.109
Brachypodium retusum 0.005 �0.086
Anthyllis cytisoides 0.033

1.25 m · 1.25 m grid

Stipa tenacissima �0.198 �0.322 �0.096 �0.044
Globularia alypum �0.210 �0.074 �0.053
Brachypodium retusum �0.011 �0.073
Anthyllis cytisoides �0.006

Expected

Stipa tenacissima �0.104 �0.205 �0.059 �0.040
Globularia alypum �0.107 �0.031 �0.021
Brachypodium retusum �0.061 �0.041
Anthyllis cytisoides �0.012
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steppes (Valentin et al. 1999), we found that the
spatial patterns of perennial vegetation in our
study site were quite complex. The semivariograms
detected notable differences in the spatial patterns
of the different species studied. The most notice-
able differences were found between S. tenacissima
and the rest of species. The dip or ‘hole effect’
found in the semivariograms of S. tenacissima
suggests the presence of a regular pattern in the
distribution of this species (Webster and Oliver
1990). Puigdefábregas and Sánchez (1996), work-
ing in a 4.37 ha study area in Almerı́a (SE Spain),
found the same effect in their semivariograms of

S. tenacissima cover, but in their case the dip
occurred at shorter ranges (between 2 and 4 m)
than those observed in our study.

The linear model of corregionalization (LMC)
allows plant ecologists to evaluate if the species
forming the community of interest share a common
spatial pattern, and to assess the spatial covariation
between the different species at different spatial
scales independently by using the structural corre-
lation coefficient. In our study area, the LMC fitted
satisfactorily to all species. This suggests a common
variation pattern for all the species, which may be
caused by an underlying environmental property

Figure 5. Correlation circles for the three sampling grids employed. S. t. = Stipa tenacissima, G. a. = Globularia alypum, B. r. =

Brachypodium retusum, A. c. = Anthyllis cytisoides, and C. s. = chamaephytes.
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driving the patterns of all the species
(e.g., large-scale variation in soil properties) or,
alternatively, by the dominance of some species’
spatial pattern, or another kind of species associ-
ation, over the rest. However, it also revealed
substantial differences in the spatial relationships
between the different species studied. The clearest
results were found for G. alypum; despite being the
species with most patches in the steppe studied, it
was negatively related to the rest of the species. The
LMC showed clearly that these negative associa-
tions were consistent for all the sampling grids.
However, the mechanisms underlying these pat-
terns can not be elucidated with our study; they
may result from seed dispersal, allelophatic inter-
actions – leaves ofG. alypum are rich in compounds
such as flavonoids, glucosids and phenolic acids
(Rivera and Obón 1991) – or belowground com-
petition, among other factors. Our results agree
with those of Webster and Maestre (2004), who
found a negative association between G. alypum
and the rest of perennial species in two S. tena-
cissima steppes close to our study site. However,
they contrast with those of Garcı́a-Fayos and
Gasque (2002), who found a positive association
between G. alypum and S. tenacissima in other
steppe. These contrasting results suggest that the
relative importance of the mechanisms underlying
the interactions between G. alypum and other spe-
cies may differ among sites. Further studies are
needed to know these mechanisms, and to test the
validity of this affirmation. It is also interesting to
note the lack of positive relationships between the
chamaephytes and the remaining species; it may be
due to the sampling procedure used (grouping of
several species in a single category), which may
mask existing species-specific patterns.

The spatial patterns of the different species
forming the steppe studied were profoundly
affected by grain size. The 5 m · 5 m grid did not
allow us to detect small-scale aggregations between
individuals of A. cytisoides and G. alypum, and did
not reveal any spatial pattern in the distribution of
the chamaephytes. The increase in the resolution
allowed us to detect small-scale conspecific associ-
ations between individuals of G. alypum and
A. cytisoides, suggested by the short-range visible
in the semivariograms, and to detect the spatial
pattern of the chamaephytes clearly. Such an in-
crease also reduced the ranges in the semivario-
grams of S. tenacissima and B. retusum. Grain size

also modified the magnitude, and even the sign, of
the structural correlation coefficients among pairs
of species. We found a positive association between
the spatial patterns of S. tenacissima and the
remaining species when using the 5 m · 5 m grid.
However, increasing the resolution allowed
us to detect a positive association only between
S. tenacissima and A. cytisoides, but at the dis-
tances defined by the second range of the LMC.
Thus, this association could reflect the distribution
of edaphic or topographic characteristics in the
study area, rather than biotic interactions mediated
by environmental modifications promoted by
S. tenacissima tussocks. Similar changes in the sign
of the correlation with changes in grain size were
found for G. alypum and A. cytisoides, and for
B. retusum and the chamaephytes, at the spatial scale
defined by the first range when passing from the
5 m · 5 m grid to the 2.5 m · 2.5 m grid. These
results highlight the importance of the observa-
tional scale when analyzing and interpreting the
spatial pattern of plant communities, specially
when they are formed by species with contrasting
sizes (Bellehumeur et al. 1997). They also agree
with previous studies reporting changes in the
spatial attributes and pattern of plant communities
(He et al. 1994; Bellehumeur et al. 1997; Song et al.
1997) and landscape units (Qi and Wu 1996; Wu
et al. 2000; Wu 2004) with changes in grain size.

The results presented here suggest that the
LMC is a suitable technique for the spatial
analysis of patchy vegetation in semi-arid steppes.
When compared to other methodologies
commonly employed to analyze the spatial pat-
tern of individual plant species or communities
(see Dale 1999 for a recent review), one of its
main advantages is the opportunity that it gives
plant ecologists to analyze spatial relationships
between different species independently at differ-
ent spatial scales. This feature may reveal pat-
terns that cannot emerge when only the global
relationship between species is explored (Perry
and Dixon 2002), thus providing more clues on
the possible mechanisms that determine the
community’s structure and function. The meth-
odology used here can also profit from GIS
capabilities in data acquisition and manipulation,
and can be used for the spatial analysis of vege-
tation over large geographical areas when data
from aerial photographs and satellite imaginary
are available. It can analyze the anisotropy in the
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spatial pattern in a straightforward way, a feature
not evaluated in this study. If information on the
environment is also available, the LMC can also
be used to test for co-ocurrence in the spatial
patterns of species and environmental variables.
Further studies are needed to compare the
methodology introduced in this paper with other
approaches commonly used by plant ecologists,
with the aim to fully explore its potential and
capabilities for the analysis of plant spatial
patterns.
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