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Abstract Biological soil crusts (BSC) play a major role
in water and nutrient fluxes in semi-arid and arid areas,
affecting the establishment of vascular plants and
contributing to the spatial arrangement of vegetated
and open areas. However, little is known regarding their
effects on the performance of extant vegetation. By
using experimental manipulations (surface soil cutting
and herbiciding), we evaluated the effect of the physical
structure and the biotic component of smooth biological
soil crusts on soil moisture dynamics, and on the

nutrient and water status, growth rate, and reproductive
effort of Stipa tenacissima tussocks in a semi-arid
steppe. Soil moisture content was weakly reduced after
cutting the soil surface and was not affected by herbicide
application. Cutting and herbiciding the biological soil
crust had no effect on most morpho-functional and
reproductive traits measured in S. tenacissima tussocks.
The integrated water use efficiency of this species, as
measured by 13C natural enrichment, decreased when
the biotic community of biological soil crusts was killed
with herbicide. In the S. tenacissima steppe studied,
killing the BSC and breaking the continuity of the
structural crust had a weak effect on the short-term
performance of this species, but our results suggest that
BSC exert a control on slope hydrology beyond that
provided by physical soil crusts.

Keywords Cyanobacteria . Disturbance . Runoff . Soil
moisture . Source-sinkdynamics . Spatial heterogeneity

Introduction

Arid and semi-arid ecosystems are characterized by a
sparse vegetation cover, which is often arranged into
distinctive spatial patterns (see Tongway et al. 2001
and references therein). In the absence of major
disturbances, this spatial patterning may be reinforced
by interactions between vegetated and open patches
(Lefever and Lejeune 1997; von Hardenberg et al.
2001; Rietkerk et al. 2002). Open and vegetated
patches interact in many ways, including the transport
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of propagules and resources such as water, sediments
and nutrients, from the former to the latter (Shachak et
al. 1998; Tongway and Ludwig 2001). The limited
ability of open areas to retain resources as compared to
vegetated patches is a direct consequence of the lower
roughness and macroporosity, and higher bulk density
of the surface soil (Ahuja and Schwartzendruber 1992;
Belnap 2006). These differences arise from various
causes, including the capacity of vascular plants to
modify environmental conditions by means of root
activity, litterfall accumulation, dust interception,
changes in hydrological fluxes, and the interaction
with other components of the community (Whitford
2002; Cortina and Maestre 2005), and the presence of
embedded rock fragments, physical crusts and biological
crusts in the open areas (Poesen and Lavee 1994; West et
al. 1992; Belnap 2006).

Biological soil crusts (hereafter BSC) are the
community of organisms living on the soil surface
in dry areas with sparse cover of vascular plants. They
can be smooth, rugose, rolling and pinnacled and this
structure is a key determinant of hydrological function
(Belnap 2001, 2006). Smooth BSC dominated by
cyanobacteria, mosses and lichens are common in arid
and semi-arid environments worldwide (Belnap and
Lange 2001), and may reduce water infiltration rate
and increase runoff production (Kidron et al. 1999;
Maestre et al. 2002; Belnap 2006). In these areas, it is
difficult to identify to what extent the effect of BSC
on resource flow and availability is a consequence of
BSC forming organisms, or is rather caused by the
structural crust underlying the BSC community
(Belnap 2001, 2006). Structural soil crusts are
characterized by in situ rearrangement of particles
with no lateral movement, and may be reinforced by
algae and fungi (Valentin and Bresson 1992). The
distinction between the effect of BSC organisms, on the
one hand, and the effect of a strengthened structural soil
crusts, on the other, is relevant to understand the role of
BSC in ecosystem functioning and determine the
importance of the BSC in community assemblage.

Despite the important role that BSC play in the fluxes
of water, carbon and nutrients in drylands (Johansen
1993; Belnap and Lange 2001), information on the
effect of BSC on the performance of vascular plants
and community dynamics is relatively scarce. Most
studies on this topic have focused on early stages of
their life cycle, particularly germination and early
survival (e.g. Escudero et al. 2007 and references

therein). But, to our knowledge, very few studies are
available on the effects of BSC on established
vegetation. In addition, most of these are based on
comparisons between vascular plants established on
areas with contrasting BSC density (Harper and Belnap
2001; DeFalco et al. 2001), but manipulative experi-
ments are lacking.

In a recent modeling exercise, Gilad et al. (2004,
2007) suggested that a strong contrast in infiltration
rates between open areas and vegetated patches
together with a restricted rooting area allowed a
significant increase in soil moisture availability under
vegetated patches. This increase may ultimately lead
to the establishment of other plants and to a general
increase in plant cover and biodiversity (Aguiar and
Sala 1999). In Gilad et al. (2004, 2007) study, plant
patches were very sensitive to changes in infiltration
rates, as their cover was substantially reduced by
disturbances favoring water infiltration in open areas.
Low infiltration rates have been reported for soils
colonized by smooth BSC compared to soils underneath
vascular plants, thus BSCmay facilitate plant growth by
increasing the runoff reaching vegetated patches
(Maestre et al. 2002; Belnap 2006). Therefore, BSC
could play a major role in sustaining the functionality
of patches covered by vascular plants (Eldridge et
al. 2002).

Steppes of the tussock grass Stipa tenacissima L. are
one of the most representative vegetation types of the
semi-arid areas of the Mediterranean basin, where they
cover more than 32 000 km2 (Le Houérou 1995). On
gentle undisturbed slopes, S. tenacissima tussocks
collect water and sediments from upslope open areas
(Cerdà 1997; Puigdefábregas et al. 1999), and modify
the microclimate of their surroundings (Maestre et al.
2001). In addition, soils underneath S. tenacissima
tussocks show higher infiltration rates, soil organic
matter and nitrogen content, lower bulk density, and are
commonly deeper than soils in adjacent areas devoid of
vascular plants (Cerdà 1997; Puigdefábregas et al. 1999;
Maestre et al. 2001). Because of the improvement in
microhabitat conditions, tussocks assemble a higher
diversity of annual plants than open areas (Sánchez
1995), facilitate the establishment of perennial plants
(Maestre et al. 2001; García-Fayos and Gasque 2002;
Maestre et al. 2003), and sustain a BSC community
dominated by mosses (Maestre and Cortina 2002).

Conversely, intertussock areas are covered by
cyanobacterially-dominated BSC, which commonly
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overlays structural crusts formed by microaggregates
derived from slaking of large aggregates after raindrop
impact (Boix-Fayos et al. 1998). Stipa tenacissima
dependence on intertussock BSC is, however, un-
known. In order to fill this gap, we evaluated the effect
of (1) suppression of the BSC community and (2)
alterations of the physical structure associated with
smooth BSC on the performance of S. tenacissima
tussocks in a semi-arid steppe in SE Spain. To our
knowledge this is the first study aiming to differentiate
the direct effects of BSC organisms from those of the
structural soil crust (sensu Valentin and Bresson 1992)
underlying them. We tested two hypotheses: (i) BSC
control the flux of resources from open to vegetated
patches and thus BSC disturbance will have a strong
effect on the performance of S. tenacissima, and (ii)
structural crusts control water fluxes independently
of the presence of the BSC organisms. Therefore,
S. tenacissima response to BSC disturbance will be
stronger when both, the physical structure of the BSC
and the BSC community itself, are altered.

Materials and methods

Study area

The study was carried out in a S. tenacissima steppe
located in Relleu (SE Spain; UTM coordinates:
735591 E, 4269506 N), at an altitude of 395 m a.s.l.,
on a 11° slope facing SE. Climate is Mediterranean semi-
arid, with mean annual precipitation and temperature of
388 mm and 16°C, respectively (1960–1990 normal
period). The soil is Lithic Calciorthid (Soil Survey Staff
1994) loamy-silty loam, derived from marls and
limestone (Ruiz 1993). They are shallow and highly
carbonated. The steppe is dominated by S. tenacissima
and the shrub Rosmarinus officinalis L., with isolated
patches of the perennial grass Brachypodium retusum
Pers. (Beauv.), and the shrubs Rhamnus lycioides L.
subsp. lycioides, Globularia alypum L., Anthyllis
cytisoides L. and Osyris lanceolata Hochst. and Steud.
Average vascular plant cover is 47%. Areas devoid of
vascular plants are covered by a BSC with several
species of cyanobacteria (including Microcoleus
steentrupii, Leptolyngbya boryanum, L. foveolarum,
Oscillatoria sp., Phormidium sp., and Chroococci-
diopsis sp.; Maestre et al. 2006), and lichens such
as Psora decipiens, Psora crenata, Collema sp. and

Placidium sp. (Vicent Calatayud, Fundación CEAM,
pers. comm.).

Experimental design

In January 2003 we established twenty 1.25×0.8 m2

plots in open areas (i.e., areas covered by BSC, where
vascular plants were absent), with the largest axis
oriented towards the prevailing slope (hereafter,
“Open” plots), and 20 plots of the same size and
arrangement, but with a S. tenacissima tussock
located at the downslope edge of the plot (hereafter,
“Tussock” plots). Tussocks covered approximately
one fourth of the plot surface area, whereas the rest of
the plot was dominated by BSC with almost no
vascular plants present. Plot perimeter was closed by
inserting a 10 cm transparent plastic sheet 5 cm into
the soil, with an open end located downslope of the
plot and connected to a runoff storage container
(Appendix I). Then we applied two treatments to
randomly selected plots of each type, in a full
factorial design with 2 fixed factors (BSC fragmen-
tation and herbicide application), and 2 levels each
(presence/absence). BSC was fragmented by cutting
the surface crust with a sharp blade to a depth of
2 cm, creating a grid pattern with a 5×5 cm cell size
oriented parallel and perpendicular to the main slope.
BSC were killed by hand spraying a 0.075 g m−2 dose
of simazine (2-chloro-4,6-bis [ethylamino]-s-triazine)
dissolved in water (Zaady et al. 2004). The same
treatments were repeated in November 2003. Tussocks
were protected from the herbicide by covering themwith
a polyethylene bag during application although direct
assimilation by leaves is low. A systemic effect of the
herbicide on S. tenacissima was unlikely, as the dose
used was relatively low and no rain fell for several days
after herbicide application. In addition, the herbicide
had no significant effect on seed germination in spring
2003 (N. Martín, unpubl. data) despite the fact that
seedlings are more sensitive to this herbicide than
adults (Knuteson et al. 2002). Immediately after the
treatments were applied, all plots were covered with a
1×0.5 cm nylon mesh located 50 cm above the surface
soil (PAR reduction 10%), to reduce raindrop kinetic
energy, and thus avoid an early formation of a physical
crust (in plots where it was fragmented), and provide
homogeneous experimental conditions for all plots.

The efficiency of herbicide application was evaluated
in January, June, August and November 2004 by
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measuring Acetylene Reduction Activity (ARA) on 32
neighboring 0.5×0.5 m microplots covered by BSC and
receiving the same treatments as the experimental plots
(8 microplots per treatment). ARA, a surrogate of
nitrogen fixing activity, has been directly related to
BSC abundance and activity in several studies, including
S. tenacissima steppes, where cyanobacteria frequently
dominate (Maestre et al. 2006). On each sampling date,
a 9-cm diameter Petri dish was inserted into the soil,
and carefully removed to extract a 2-cm depth unaltered
soil surface sample. ARA analyses were then conducted
as described in Maestre et al. (2006). Data are presented
as the rates of C2H4 accumulation over time, accounting
for BSC area.

Microclimate monitoring

We measured soil temperature and moisture content
by means of water-proof diodes and using the Time
Domain Reflectometry method (TDR, Topp and
Davis 1985), respectively. Diodes were placed at
5 cm depth in the same plots where ARA was
measured (i.e, only open areas), and temperature
was measured by using a modified multimeter on 7
sampling dates between December 2003 and July
2004. TDR probes, 8 cm long, were inserted
vertically on the surface soil 20 cm, 50 cm and
75 cm downslope from the upper edge of each Open
and Tussock plot (hereafter “Location”). Volumetric
soil moisture content was measured on 8 sampling
dates between May 2003 and July 2004. We used a
Tektronix 1502C metallic TDR cable tester (Tektronix,
Beaverton, Oregon, USA), and a site-specific calibration
factor for the soils of the study area.

Stipa tenacissima response

We used predawn water potential, predawn and
midday chlorophyll a fluorescence of PS(II), photo-
synthetic rate, the concentrations of foliar N, 13C, and
15N, growth rate and reproductive effort to evaluate
the response of S. tenacissima tussocks to the
experimental treatments. Predawn water potential
was determined on one excised leaf per tussock on
five sampling dates between June 2003 and May 2004
by using Scholander’s pressure bomb (Soil Moisture
Equipment Corp., Santa Barbara, CA, U.S.A.). We
measured maximal PS(II) photochemical efficiency in
dark-adapted intact leaves on 6 sampling dates

between June 2003 and August 2004 by using a
portable, pulse-modulated fluorometer (PAM-2000,
Walz, Effeltrich, Germany), equipped with a leaf clip
holder (2030-B, Walz). Predawn and midday meas-
urements of maximal (Fm) and minimal (F0) fluores-
cence were used to calculate the maximum efficiency
of the photosynthetic energy conversion of PSII
Fv=Fm ¼ Fm � F0½ �=Fmð Þ, where Fv is the variable
fluorescence (Genty et al. 1989). Net CO2 assimilation
rates were measured on 3 leaves per tussock and
sampling date with a portable infrared gas analyzer
(LI-6200; Li-COR Inc., Lincoln, NE) as described in
Long et al. (1996). Measurements were taken in early
morning (09:00–10:00 GMT) and midday (12:00–
13:00 GMT), on January 20th 2004 and May 19th
2004. Incident PAR was adjusted and maintained at
average values for each sampling period (from 850 to 1
100 μmol quanta m−2 s−2 in winter; from 1 300 to 1
950 μmol quanta m−2 s−2 in spring). On June 10th
2004 we sampled 2 healthy unshaded leaves from five
S. tenacissima tussocks per treatment. Plant material
was air-dried at 65°C until constant weight, and ground
to fine powder in a ringmill. Milled samples were
transferred into tin capsules containing 2 mg of sample
and injected into an elemental analyzer coupled to an
isotope ratio mass spectrometer (Europa Hydra 20/20,
PDZ Europa, Rudheat, UK). The δ13C and δ15N values
of the samples were calculated by using the equation
δX = [(Rsample/Rstandard)-1] x 1,000 (‰), where δX rep-
resents δ13C or δ15N, and R is the mass ratio of heavy
to light isotopes (13C/12C or 15N/14N). All isotopic
analyses were conducted at the Stable Isotope Facility
of the University of California at Davis.

We measured the length of green leaves in 15 tillers
per tussock onMay 12th 2003, June 11th 2003, May 4th
2004 and May 25th 2004, and used the average
difference in length between consecutive sampling dates
for a given tussock and year as estimates of above-
ground growth response to the experimental treatments.
No significant leaf losses were detected between the
sampling dates. Spikes of S. tenacissima grow in early
spring (Haase et al. 1995), and we estimated repro-
ductive effort as the number of spikes produced per
tussock during spring of 2003 and 2004.

Statistical analyses

The effects of BSC fragmentation and herbicide on
ARA activity and soil temperature in open areas were
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analyzed with a three-way repeated measures analysis
of variance (ANOVA), with time as the within-subject
factor, and BSC fragmentation and herbicide applica-
tion as fixed between-subject factors. A repeated
measures ANOVA with the same structure was used
to analyze the effect of BSC fragmentation and
herbicide application on S. tenacissima chlorophyll
fluorescence and predawn water potential in plots
where this species was present. A five-way repeated
measures ANOVA was used to evaluate the effect of
time (within-subjects factor), and the presence of
S. tenacissima tussocks, location within the plot, BSC
fragmentation and herbicide application (between-
subject factors) on soil moisture content. Photosyn-
thetic rate, foliar N, 13C, and 15N concentrations,
foliar elongation and spike production data were
analyzed by using two-way ANOVA, with BSC
fragmentation and herbicide application as fixed
factors. Prior to analyses, we transformed foliar
elongation into its decimal logarithm and foliar N
and C concentrations into the function arcsin(X)0.5 to
fulfill assumptions of normality and homoscedasticity.
We used Greenhouse-Geisser’s epsilon to adjust the
degrees of freedom in repeated measures ANOVA
because the sphericity of the variance-covariance
matrix could not be assumed (Mauchly’s test, p<
0.05). The number of replicates for each analysis
and combination of treatments was 5, unless noted.
The degree of covariation between predawn water
potential and maximal photochemical efficiency
was determined by using Pearson correlation analysis.
All statistical analyses were performed with the use
of the SPSS 9.0 package (SPSS, Chicago, Illinois,
USA).

Results

Treatment effects on BSC

Acetylene reduction rates greatly varied between sam-
pling periods (Fig. 1). Nitrogen fixing cyanobacteria
were affected by herbicide application, but not by
fragmentation. Two months after treatment application,
nitrogenase activity was reduced by 70% in BSC
treated with herbicide, as compared to Control BSC.
Differences decreased with time but they were still
significant in November 2004, 1 year after the second
herbicide application. The interaction between fragmen-

tation and herbicide was not significant, albeit BSC
receiving both treatments consistently showed lower
ARA than BSC treated with herbicide alone.

Treatment effects on soil microclimate

Soil moisture content was highly variable; the lowest
values (ca. 5%) were reached during summer 2003
and summer 2004 (Fig. 2; Table 1). The absence of
S. tenacissima tussocks and BSC fragmentation
decreased soil moisture in a similar manner (average
reductions of 1% in both cases; Fig. 2a and b).
Herbicide application and location had a marginally
significant effect on soil moisture content (Fig. 2c and
d). Treatment effects were not uniform across the
study period, as shown by the significant 2-way
interactions involving time. Average soil surface
temperature ranged from 10 to 32°C over the study
period, but we found no significant effect of BSC
fragmentation and herbicide application on this
variable (Appendix II).

Treatment effects on Stipa tenacissima performance

Predawn water potential of S. tenacissima tussocks
ranged between −0.8 and −1.7 MPa during spring,
winter and autumn, but decreased to minimum values
of −3.4 MPa and −6.7 MPa during summer 2003 and
2004, respectively (Fig. 3). We found no significant
effect of BSC fragmentation or herbicide application
on predawn water potential. Temporal variation in
maximal photochemical efficiency was similar to that
of water potential (Fig. 3), as both variables were
highly correlated (r=0.830, P<0.001, n=104). Under
high water availability (from November 2003 to May
2004), photochemical efficiency of S. tenacissima
showed an average value of 0.68. This value
decreased in summer 2003 and, especially, in summer
2004 when it reached an average value of 0.28. No
significant effect of BSC manipulation on this
variable was observed.

Photosynthetic rate of S. tenacissima ranged
between 6.3 and 9.7 μmol CO2 m−2 s−1 in January
2004, when water availability was high, and between
1.0 and 4.0 μmol CO2 m

−2 s−1 during the May 2004
drought (Table 2). The treatments evaluated did not
affect this variable. Integrated water-use-efficiency, as
estimated from 13C natural enrichment, ranged between
−24.5 and −25.5‰, and significantly decreased in
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Fig. 2 Volumetric soil moisture content in the 0–8 cm depth
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tussocks where the BSC had been killed with
herbicide. We found no significant effect of BSC
fragmentation and herbicide application on either foliar
N concentration or 15N enrichment.

Average leaf elongation in spring 2003 ranged
from 12 to 20 cm, and showed no significant response
to BSC fragmentation or herbicide application
(Fig. 4). Similar results were obtained in spring
2004. The average number of spikes per tussock
was substantially lower in S. tenacissima tussocks
where the BSC had been fragmented, but differences
were not statistically significant (Fig. 4). This may be
a consequence of the variability in spike production
found within each treatment (average coefficient of
variation ca. 80%). Spike production in 2004 was
much lower (average values 0.3–5 spikes per tussock),
with 40% of the tussocks producing no spikes. Treat-
ments had no significant effects on the average number
of spikes produced in 2004.

Discussion

Biological soil crusts have a strong capacity to modify
soil properties and the fluxes of water, carbon, nutrients
and sediments (Belnap and Lange 2001; Maestre et al.
2005). Thus, BSC-mediated effects are likely to affect
the performance of established vegetation, and propa-
gate to larger scales (Evans and Ehleringer 1993),
particularly when the plant species affected play a
major role in ecosystem dynamics. Following current
knowledge on S. tenacissima steppes composition and
dynamics, and the results of Gilad et al. (2004, 2007)
and Eldridge et al. (2002), we advanced the hypothesis
that any alteration of the BSC which increased
infiltration rate and reduced runoff would negatively
affect the performance of S. tenacissima. This hypothesis
was not supported by our results, as S. tenacissima
showed a weak response to alterations of the physical
and biotic structure of BSC. Our second hypothesis,
which predicted that the response of S. tenacissima to
BSC disturbance should be stronger when the physical
structure of the BSC is altered, was not supported either,
as the effect of BSC fragmentation on S. tenacissima
performance was not substantially different from the
one elicited by herbicide application.

Treatment effects on BSC

The treatments applied affected BSC integrity and
surface soil properties, as denoted by changes in N
fixation activity, soil moisture content and water
infiltration rate (data not shown). Herbicide application
had a strong effect on N fixation activity, suggesting that
the populations of N-fixing cyanobacteria and cyano-
lichens may have been reduced for an extended period
of time. Although not all BSC cyanobacteria fix
nitrogen, N fixation can be used as a surrogate of BSC
biomass in these soils (Maestre et al. 2006). Simazine
remains active in the soil for months (García-Valcárcel
and Tadeo 1999; Barra et al. 2005), and it may have
precluded BSC colonization during the humid season.
This is in agreement with studies showing a prolonged
reduction of BSC activity in response to herbicide
application (Zaady et al. 2004). In addition, we may
note that early colonizers of the BSC community may
take several years to establish on barren soils when
water is limiting (Belnap and Eldridge 2001; Maestre
et al. 2006). In the present study, herbicide effect on
moss cover was visible by direct observation (ca. 50%

Table 1 Results of a repeated-measures ANOVA to evaluate
changes in soil moisture content as affected by the presence of a
Stipa tenacissima tussock, BSC fragmentation, herbicide appli-
cation and location within the microplots. Results of >2-ways
interactions involving Time were not statistically significant and
are not shown

Factor F d.f. P

Time (T) 2 089.168 5.5, 525 <0.001

Stipa (S) 8.573 1,96 0.004

BSC fragmentation (F) 10.959 1,96 0.001

Herbicide application (H) 2.798 1,96 0.098

Location (L) 2.916 1,96 0.059

S × F 0.962 1,96 0.329

S × H 1.490 1,96 0.225

F × H 0.283 1,96 0.596

S × F × H 1.906 1,96 0.171

S × L 0.113 1,96 0.893

F × L 0.412 1,96 0.663

S × F × L 0.084 1,96 0.919

H × L 0.975 1,96 0.381

S × H × L 0.411 1,96 0.664

F × H × L 0.182 1,96 0.834

S × F × H × L 0.319 1,96 0.727

T × S 5.084 5.5,525 <0.001

T × F 4.564 5.5,525 <0.001

T × H 2.418 5.5,525 0.030

T × L 0.988 10.9,525 0.456
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reduction in May 2003; N. Martín, unpubl. data).
Confocal microscopy observations provided further
evidence of a decrease in cyanobacterial activity
after herbicide application (B. Díez, University of
Alicante, pers. comm.). The trend towards a higher
decrease in N fixation activity in plots where the BSC
was killed and fragmented could be the result of further
herbicide penetration. In contrast to herbicide applica-
tion, physical alteration of the surface soil did not affect
BSC ability to fix atmospheric nitrogen, which may
reflect the relative small surface area affected by this
treatment.

Treatment effects on soil microclimate

Soil moisture content was higher where S. tenacissima
tussocks were present. Interestingly, we found a trend

towards lower differences in soil moisture content
between Open and Stipa sites as we moved downslope.
Indeed, the average difference between both sites was
reversed at this location (i.e., average moisture content
close to the tussocks was lower than in the
corresponding location in open plots; Appendix III).
Our results suggest that water uptake may have
balanced the positive effect of shade on moisture
content near S. tenacissima tussocks, and thus may
have been responsible for the lack of differences found
in the lower section of the experimental plots. Shade
and runoff concentration may compensate for higher
water uptake by S. tenacissima when water is
available, but this may not be the case when it is
scarce. Under severe drought, transpiration losses may
deplete water in the vicinity of the tussocks, and thus
soil moisture content may be lower in those microsites
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than in open areas. The study area experienced an
intense, although not unusual, drought during the study
period. Accumulated rainfall between January 2003
and January 2004 was 199 mm, 51% of the local

average, and only 14 mm fell between May 7th 2003
and October 18th 2004 (Appendix IV).

BSC fragmentation significantly decreased soil
moisture content, especially in the sector of the

Table 2 Photosynthetic rate, N concentration and 15N and 13C enrichment in Stipa tenacissima leaves, as affected by BSC
fragmentation (F) and herbicide application (H). Data correspond to means and standard errors of n=5 tussocks. Values of the F
statistic for the 2 factors evaluated and their interaction is shown. A significant value (p<0.05) is shown in bold

Treatments ANOVA results

Control F H F × H F H F × H

F1,15 P F1,15 P F1,15 P

Photosynthetic rate (μmol CO2 m
−2 s−1)

20/01/04 morning 6.3± 0.7 7.6± 0.8 9.7± 1.9 8.3± 1.1 0.045 0.835 1.849 0.194 1.485 0.242

20/01/04 midday 6.7± 1.3 6.6± 0.8 6.7± 1.1 6.9± 1.2 0.705 0.414 0.133 0.721 1.195 0.292

19/05/04 morning 1.2± 0.2 1.3± 0.3 1.7± 0.5 1.0± 0.2 0.004 0.953 0.013 0.912 0.017 0.898

19/05/04 midday 2.7± 0.3 3.2± 0.5 4.0± 0.5 3.2± 0.6 0.001 0.974 2.809 0.114 1.249 0.281

δ13C (‰) −24.8± 0.3 −24.5±0.3 −25.5± 0.3 −25.4±0.3 0.405 0.534 6.938 0.019 0.144 0.710

N (mg g−1) 8.8± 1.2 6.2±0.9 9.6±1.4 7.6±0.1 3.813 0.070 1.210 0.289 0.142 0.712

δ15N (‰) −1.86± 0.44 −2.68±0.56 −2.78±0.41 −2.10±0.32 0.022 0.884 0.137 0.721 2.527 0.133

Table 2 Photosynthetic rate, N concentration and 15N and 13C
enrichment in Stipa tenacissima leaves, as affected by BSC
fragmentation (F) and herbicide application (H). Data correspond

to means and standard errors of n=5 tussocks. Values of the F
statistic for the 2 factors evaluated and their interaction is shown.
A significant value (p<0.05) is shown in bold
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Results of the two-way ANOVA are shown
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experimental plots that was farther from S. tenacissima
tussocks. These results were unexpected, as runoff was
substantially reduced in plots where the BSC had been
fragmented as compared to untreated plots (e.g., an
average decrease of 46% and 34% in surface runoff for
open plots where the BSC had been fragmented, and
fragmented plus herbicided, respectively; Martín et al.
2003). A resulting increase in evaporation rate could
explain the decrease in soil moisture content after BSC
fragmentation. This process is supported by studies
showing a decrease in soil moisture content in tilled
soils (Blevins et al. 1983; Mygdakos et al. 2005). Also,
increased infiltration may have been restricted to the
top soil layers which dry out very quickly. These short-
term small changes in moisture availability may not be
detected by periodic TDR measurements.

Treatment effects on Stipa tenacissima performance

The decrease in water use efficiency in S. tenacissima
tussocks suggests that their water status improved
after herbicide application, and provides support to
the marginally significant effect of this treatment on
soil moisture observed. This decrease was not the
result of a reduction in vascular plant cover upslope of
the tussocks in plots treated with herbicide, as vascular
plants were absent at the beginning of the experiment,
and recruitment in spring 2003 was transient and
showed no effect of herbicide (N. Martín, unpubl. data).
Direct effects of herbicide on S. tenacissima cannot be
excluded, but they are unlikely, as the dose applied was
relatively low. No major rainfall occurred soon after
herbicide application and young plants, which are more
sensitive to this herbicide, showed no effect of this
treatment. Simazine applied at similar doses as the
ones used in the present study had deleterious effects
on smooth BSC structure, resulting in increased losses
of mineral soil, organic matter and nitrogen in soils
with sandy loam texture (Zaady et al. 2004). Assuming
that simazine had similar effects on BSC in our study
site, our results suggest that temporary BSC suppres-
sion resulted in a small increase in water availability
that benefited S. tenacissima tussocks. The effect of
BSC on water availability depends on BSC type, soil
properties and rainfall regime. Thus, both hydrophobic
and hydrophilic responses have been reported for BSC
components (Kidron et al. 1999; Belnap 2006).

The reduction in N fixation rate in BSC treated with
herbicide had no effect on either foliar N concentration or

15N enrichment of S. tenacissima. Several studies have
shown a consistent positive effect of the presence of
N-fixing BSC on the N status of vascular plants (Belnap
and Harper 1995; Pendleton et al. 2003). This disagree-
ment may partly reflect the low nitrogenase activity in
the study area (below 2 nmol C2H4 cm−2 h−1 during
most of the year), and the relatively high fertility of the
surface soil as compared to other S. tenacissima steppes
(i.e., average 6.9% organic matter in the surface soil;
Maestre and Cortina 2004). Zaady et al. (2004) have
shown that shrubs from the northern Negev desert retain
more than 50% of the NO3-N dissolved in runoff water
coming from upslope areas covered by BSC. They also
found that suppression of BSC with herbicide resulted
in a strong increase in nitrate export. The magnitude of
the fluxes, however, was very low and unlikely to
generate major changes in the nutritional status of
vascular plants. BSC fragmentation promoted a margin-
ally significant reduction in foliar N concentration. This
reduction may not be related to BSC activity as it was
not accompanied by changes in N fixation rate or 15N
enrichment. Overall, our results suggest that the role
of BSC in the nutritional status of vascular plants in
S. tenacissima steppes is less significant than in other
dryland areas (Evans and Ehleringer 1993).

The direct effects of the BSC on S. tenacissima
water and nutrient status were weak, suggesting that
the functional role of BSC is less significant than the
role played by structural soil crusts and resource-
modulating organisms such as vascular plants and soil
fauna. Nevertheless, we must bear in mind that only
the short-term effects of BSC alteration were assessed
in this study. We cannot exclude the possibility that
a cumulative effect of BSC suppression on water
and nutrient fluxes could have a stronger impact on
S. tenacissima performance over a longer term. In
addition, BSC impact on soil surface properties may
persist for more than 2 years after their death, as
observed under vascular plants (Kelly and Burke
1997, Martinez-Mena et al. 2002, Armas et al. 2008).
Finally, the magnitude of the water pulses during the
period of study may have been too small to trigger
S. tenacissima response (Schwinning and Sala 2004).

Conclusion

Alterations of the physical structure and the BSC
community, such as the ones applied in our study, had
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a limited effect on short-term S. tenacissima perfor-
mance. The fragmentation of the BSC had a weak
negative effect on soil moisture availability, probably
as a result of increased evaporation. But this change
was not strong enough to affect S. tenacissima water
and nutrient status, growth rate or reproductive
output. On the other hand, killing the BSC with
herbicide significantly reduced water use efficiency of
this species but did not affect other response
variables. Our results suggest that BSC exert a direct
control of slope hydrology beyond that provided by
physical soil crusts, but severe alterations of the
structural crust or the BSC may be needed to elicit a
strong response of S. tenacissima tussocks.

Acknowledgements We thank Rosario López-Poma for their
contribution in several phases of this project, and Matt Bowker,
David Eldridge and an anonymous reviewer for their helpful
inputs. Funding for this project was supplied by Ministerio de
Educación y Ciencia (project FANCB; REN2001-0424-C02-02/
GLO), by Program Consolider-Ingenio 2010 (project GRACCIE),
and by Ministerio de Medio Ambiente, Medio Rural y Marino
(project ESTRES; 063/SGTB/2007/7.1). JC acknowledges sup-
port from Ministerio de Educación y Ciencia (Programa Nacional
de Ayudas para la Movilidad), and thanks Ecological Restoration
Institute and School of Forestry at NAU for their kind hospitality.
FTMwas supported by a Ramón y Cajal contract from the Spanish
Ministerio de Educación y Ciencia (co-funded by the European
Social Fund), by the British Ecological Society (ECPG 231/607),
and by the projects INTERCAMBIO (BIOCON06/105) and
REMEDINAL (S-0505/AMB/0335), funded by Fundación BBVA
and the Comunidad de Madrid, respectively.

References

Aguiar MR, Sala OE (1999) Patch structure, dynamics and
implications for the functioning of arid ecosystems. Trends
Ecol Evol 14:273–277

Ahuja LR, Schwartzendruber D (1992) Flow through crusted
soils: analytical and numerical approaches. In: Summer
ME, Stewart BA (eds) Advances in soil science. Lewis,
Boca Raton, pp 93–122

Armas C, Pugnaire FI, Sala OE (2008) Patch structure dynamics
and mechanisms of cyclical succession in a Patagonian
steppe (Argentina). J Arid Environ 72:1552–1561

Barra A, Grenni P, Ciccoli R, Di Landa G, Cremisini C (2005)
Simazine biodegradation in soil: analysis of bacterial
community structure by in situ hybridization. Pest Manage
Sci 61:863–869

Belnap J (2001) Comparative structure of physical and biological
crusts. In: Belnap J, Lange OL (eds) Biological soil crusts:
structure, function, and management. Springer-Verlag, Berlin,
pp 177–191

Belnap J (2006) The potential roles of biological soil crusts in
dryland hydrologic cycles. Hydrol Process 20:3159–3178

Belnap J, Eldridge D (2001) Disturbance and recovery of
biological soil crusts. In: Belnap J, Lange OL (eds)
Biological soil crusts: structure, function, and management.
Springer-Verlag, Berlin, pp 363–383

Belnap J, Harper KT (1995) Influence of cryptobiotic soil
crusts on elemental content of tissue of two desert seed
plants. Arid Soil Res Rehabil 9:107–115

Belnap J, Lange OL (2001) Biological soil crusts: structure,
function, and management. Springer-Verlag, Berlin

Blevins RL, Smith MS, Thomas GW, Frye WW (1983)
Influence of conservation tillage on soil properties. J Soil
Water Conserv 38:301–305

Boix-Fayos C, Calvo-Cases A, Imeson AC, Soriano-Soto MD,
Tiemessen IR (1998) Spatial and short-term temporal varia-
tions in runoff, soil aggregation and other soil properties along
a Mediterranean climatological gradient. Catena 33:123–138

Cerdà A (1997) The effect of patchy distribution of Stipa
tenacissima L. on runoff and erosion. J Arid Environ 36:37–
51

Cortina J, Maestre FT (2005) Plant effects on soils in drylands.
Implications for community dynamics and dryland restoration.
In: Binkley D, Menyailo O (eds) Tree species effects on soils:
implications for global change. NATO Science Series Kluwer
Academic, Dordrecht, pp 85–118

DeFalco LA,Detling JK, Tracy R,Warren SD (2001) Physiological
variation among native and exotic winter annual plants
associated with microbiotic crusts in theMojave Desert. Plant
Soil 234:1–14

Eldridge DJ, Zaady E, Shachak M (2002) Microphytic crusts,
shrub patches and water harvesting in the Negev Desert:
the Shikim system. Landsc Ecol 17:587–597

Escudero A, Martínez I, de la Cruz A, Otálora MG, Maestre FT
(2007) Soil lichens have species-specific effects on the
seedling emergence of three gypsophile plant species. J
Arid Environ 70:18–28

Evans RD, Ehleringer JR (1993) A break in the nitrogen cycle
in aridlands—evidence from delta 15N of soils. Oecologia
94:314–317

García-Fayos P, Gasque M (2002) Consequences of a severe
drought on spatial patterns of woody plants in a two-phase
mosaic steppe of Stipa tenacissima L. J Arid Environ
52:199–208

García-Valcárcel AI, Tadeo JL (1999) Influence of soil moisture
on sorption and degradation of hexazinone and simazine in
soil. J Agric Food Chem 47:3895–3900

Genty B, Briantais JM, Baker NR (1989) The relationship
between the quantum yield of photosynthetic electron
transport and quenching of chlorophyll fluorescence. Acta
Biochem Biophys 990:87–92

Gilad E, von Hardenberg J, Provenzale A, Shachak M, Meron
E (2004) Ecosystem engineers: from pattern formation to
habitat creation. Phys Rev Lett 93:981051–981054

Gilad E, von Hardenberg J, Provenzale A, Shachak M, Meron
E (2007) A mathematical model of plants as ecosystem
engineers. J Theor Biol 244:680–691

Haase P, Pugnaire FI, Incoll LD (1995) Seed production and
dispersal in the semi-arid tussock grass Stipa tenacissima
L. during masting. J Arid Environ 31:55–65

Harper KT, Belnap J (2001) The influence of biological soil
crusts on mineral uptake by associated vascular plants. J
Arid Environ 47:347–357

Plant Soil (2010) 334:311–322 321 Author's personal copy 



Johansen JR (1993) Cryptogamic crusts of semiarid and arid
lands of North America. J Phycol 29:140–147

Kelly RH, Burke IC (1997) Heterogeneity of soil organic
matter following death of individual plants in shortgrass
steppe. Ecology 78:1256–1261

Kidron G, Yaalon DH, Vonshak A (1999) Two causes for
runoff initiation on microbiotic crusts: hydrophobicity and
pore clogging. Soil Sci 164:18–27

Knuteson SL, Whitwell T, Klaine SJ (2002) Influence of plant
age and size on simazine toxicity and uptake. J Environ
Qual 31:2096–2103

Lefever R, Lejeune O (1997) On the origin of tiger bush. Bull
Math Biol 59:263–294

Le Houérou HN (1995) Bioclimatologie et biogéographie des
steppes arides du Nord de l’Afrique. Options Méditerr
10:1–396

Long SP, Farage PK, García RL (1996) Measurement of leaf
and canopy photosynthetic CO2 exchange in the field. J
Exp Bot 47:1629–1648

Maestre FT, Cortina J (2002) Spatial patterns of surface soil
properties and vegetation in a Mediterranean semi-arid
steppe. Plant Soil 241:279–291

Maestre FT, Cortina J (2004) Insights into ecosystem composition
and function in a sequence of degraded semiarid steppes.
Restor Ecol 12:494–502

Maestre FT, Bautista S, Cortina J, Bellot J (2001) Potential of
using facilitation by grasses to establish shrubs on a
semiarid degraded steppe. Ecol Appl 11:1641–1655

Maestre FT, Huesca MT, Zaady E, Bautista S, Cortina J (2002)
Infiltration, penetration resistance and microphytic crust
composition in contrasted microsites within a Mediterranean
semi-arid steppe. Soil Biol Biochem 34:895–898

Maestre FT, Bautista S, Cortina J (2003) Positive, negative and
net effects in grass-shrub interactions in semiarid Medi-
terranean steppes. Ecology 84:3186–3197

Maestre FT, Escudero A, Martínez I, Guerrero C, Rubio A
(2005) Does spatial pattern matter to ecosystem function-
ing? Insights from biological soil crusts. Funct Ecol
19:566–573

Maestre FT, Martín N, Díez B, López-Poma R, Santos F, Luque
I, Cortina J (2006) Watering frequency, fertilization, and
slurry-inoculation promote recovery of biological soil
crust function in degraded soils. Microb Ecol 52:365–377

Martín N, Bautista S, Maestre FT, Cortina J (2003) Evaluación
del papel de la costra biológica en los flujos de agua en un
espartal semiárido: Diseño experimental y resultados
preliminares. In: Actas del VII Congreso Nacional de la
Asociación Española de Ecología Terrestre, pp 1458–
1468. Universidad Autónoma de Barcelona, Barcelona

Martinez-Mena M, Alvarez Rogel J, Castillo V, Albaladejo J
(2002) Organic carbon and nitrogen losses influenced by
vegetation removal in a semiarid mediterranean soil.
Biogeochem 61:309–321

Mygdakos E, Avgoulas C, Bilalis D (2005) Conventional,
reduced tillage and no-tillage systems for cotton growing
under Mediterranean conditions: a cultural and economic
approach. J Food Agric Environ 3:173–179

Pendleton RL, Pendleton BK, Howard GL, Warren SD (2003)
Growth and nutrient content of herbaceous seedlings
associated with biological soil crusts. Arid Land Res
Manag 17:271–281

Poesen J, Lavee H (1994) Rock fragments in top soils:
significance and processes. Catena 23:1–28

Puigdefábregas J, Solé-Benet A, Gutiérrez L, Del Barrio G, Boer
M (1999) Scales and processes of water and sediment
redistribution in drylands: results from the Rambla Honda
field site in Southeast Spain. Earth Sci Rev 48:39–70

Rietkerk M, Boerlijst MC, Langevelde FV, Hilleriss-Lambers
R, van de Koppel J, Kumar L, Prins HHT, de Roos AM
(2002) Self-organization of vegetation in arid ecosystems.
Am Natur 160:524–530

Ruiz A (1993) Mapa Forestal de España, E 1: 20 000. Alicante.
Hoja 8–9. Instituto para la Conservación de la Naturaleza,
Madrid

Sánchez G (1995) Arquitectura y dinámica de las matas de
esparto Stipa tenacissima (L.), efectos en el medio e
interacciones con la erosión. Ph.D. Thesis. Universidad
Autónoma de Madrid. Madrid

Schwinning S, Sala OE (2004) Hierarchy of responses to resource
pulses in arid and semi-arid ecosystems. Oecologia 141:211–
220

Shachak M, Sachs M, Moshe I (1998) Ecosystem manage-
ment of desertified shrublands in Israel. Ecosystems
1:475–483

Soil Survey Staff (1994) Keys to soil taxonomy, 6th edn. USDA-
Natural Resources Conservation Service, Washington, DC

Tongway D, Ludwig J (2001) Theories on the origins, mainte-
nance dynamics and functioning of banded landscapes. In:
Tongway D, Valentin C, Seghieri J (eds) Banded vegetation
patterns in arid and semiarid environments: ecological
processes, and consequences for management. Springer
Verlag, Heidelberg, pp 20–31

Tongway D, Valentin C, Seghieri J (eds) (2001) Banded
vegetation patterns in arid and semiarid environments:
ecological processes, and consequences for management.
Springer Verlag, Heidelberg

Topp GC, Davis JL (1985) Measurement of soil water content
using time-domain reflectometry (TDR): a field evaluation.
Soil Sci Soc Am J 49:19–24

Valentin C, Bresson LM (1992) Morphology, genesis and
classification of surface crusts in loamy and sandy soils.
Geoderma 55:225–245

von Hardenberg J, Meron E, Shachak M, Zarmi Y (2001)
Diversity of vegetation patterns and desertification. Phys
Rev Lett 87:1–4

West LT, Chiang SC, Norton LD (1992) The morphology of
surface crusts. In: Summer ME, Stewart BA (eds) Soil
crusting. Chemical and physical processes. Adv. Soil Sci.
Lewis, Boca Raton, pp 73–92

WhitfordWG (2002) Ecology of desert systems. Academic, London
Zaady E, Levacov R, Shachak M (2004) Application of the

herbicide simazine and its effect on soil surface parameters
and vegetation in a patchy desert landscape. Arid Land
Res Manag 18:397–410

322 Plant Soil (2010) 334:311–322 Author's personal copy 


	Disturbance of the biological soil crusts and performance of Stipa tenacissima in a semi-arid Mediterranean steppe
	Abstract
	Introduction
	Materials and methods
	Study area
	Experimental design
	Microclimate monitoring
	Stipa tenacissima response
	Statistical analyses

	Results
	Treatment effects on BSC
	Treatment effects on soil microclimate
	Treatment effects on Stipa tenacissima performance

	Discussion
	Treatment effects on BSC
	Treatment effects on soil microclimate
	Treatment effects on Stipa tenacissima performance

	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


