Functional diversity enhances the resistance of ecosystem multifunctionality to aridity in Mediterranean drylands

Enrique Valencia1, Fernando T. Maestre1, Yoann Le Bagousse-Pinguet2, José Luis Quero3, Riin Tamme4, Luca Börger5, Miguel García-Gómez1,6 and Nicolas Gross7,8

1Área de Biodiversidad y Conservación, Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933, Móstoles, Spain; 2Department of Botany, Faculty of Science, University of South Bohemia, Branišovska 31, CZ-370 05, Česke Budejovice, Czech Republic; 3Departamento de Ingeniería Forestal Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Universidad de Córdoba, Campus de Rabanales Ctra N-IV km. 396, C.P. 14071, Córdoba, Spain; 4Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, Estonia; 5Department of Biosciences, College of Science, Swansea University, Singleton Park, Swansea, SA2 8PP, UK; 6Departamento de Ingeniería y Morfología del Terreno, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Calle Profesor Aranguren s/n, 28040, Madrid, Spain; 7INRA, USCI 139 (CEBC), F-79360, Villiers en Bois, France; 8Centre d’étude biologique de Chizé, CNRS – Université La Rochelle (UMR 7372), F-79360, Villiers en Bois, France

Summary

- We used a functional trait-based approach to assess the impacts of aridity and shrub encroachment on the functional structure of Mediterranean dryland communities (functional diversity (FD) and community-weighted mean trait values (CWM)), and to evaluate how these functional attributes ultimately affect multifunctionality (i.e. the provision of several ecosystem functions simultaneously).
- Shrub encroachment (the increase in the abundance/cover of shrubs) is a major land cover change that is taking place in grasslands worldwide. Studies conducted on drylands have reported positive or negative impacts of shrub encroachment depending on the functions and the traits of the sprouting or nonsprouting shrub species considered.
- FD and CWM were equally important as drivers of multifunctionality responses to both aridity and shrub encroachment. Size traits (e.g. vegetative height or lateral spread) and leaf traits (e.g. specific leaf area and leaf dry matter content) captured the effect of shrub encroachment on multifunctionality with a relative high accuracy ($r^2 = 0.63$). FD also improved the resistance of multifunctionality along the aridity gradient studied.
- Maintaining and enhancing FD in plant communities may help to buffer negative effects of ongoing global environmental change on dryland multifunctionality.

Introduction

Global change is altering biodiversity worldwide at an unprecedented rate, with important consequences for the functioning of natural ecosystems (Vitousek et al., 1997; Chapin et al., 2000). A response–effect framework based on plant functional traits has been proposed to explore the ecosystem-level consequences of local changes in biodiversity in response to ongoing global environmental change (global change hereafter; Lavorel & Garnier, 2002; Suding et al., 2008). This approach states that changes in the functional structure of communities can partly affect ecosystem functioning (‘indirect’ effects, sensu Suding et al., 2008), although global change drivers also alter such functioning directly (Asner et al., 2004; Austin et al., 2004; Zepp et al., 2007). The influential ‘mass ratio hypothesis’ (Grime, 1998) considers that the traits of dominant species largely determine the effects of plant communities on ecosystem functioning. As such, trait-based studies have mainly focused on community-weighted mean values (CWM hereafter; Garnier et al., 2004; Violle et al., 2007; Suding et al., 2008; see De Bello et al., 2010; for a review). However, global change drivers can also affect the variance of the trait distributions within communities (here defined as ‘functional diversity’ (FD); see Laliberté & Legendre, 2010). High FD may reflect an increase in complementarity in resource use between species (Gross et al., 2007b), thus improving ecosystem functioning (Díaz et al., 2007).

Most studies investigating the relationship between the community functional structure and ecosystem functioning have studied one or a few ecosystem functions (see De Bello et al., 2010 for a review). However, ecosystems are primarily valued because they provide multiple functions and services simultaneously (i.e. multifunctionality hereafter; Zavaleta et al., 2010). Therefore, assessing how global change drivers may impact multifunctionality is crucial to understand the ecological consequences of global change (Reiss et al., 2009; Zavaleta et al., 2010; Cardinale et al., 2012). In this context, high degrees of FD have been
hypothesized as crucial for maintaining high multifunctionality (Mouillot et al., 2011).

Arid, semiarid and dry-subhumid ecosystems (drylands hereafter) are currently impacted by climate change (Maestre et al., 2012b) and shrub encroachment (Eldridge et al., 2011). Shrub encroachment, that is, an increase in abundance and/or density of shrub species in grasslands (Schlesinger et al., 1990), is a major land cover change that is occurring in drylands worldwide (Knapp et al., 2008; Maestre et al., 2009; Li et al., 2013). This phenomenon has been found to promote dryland desertification by reducing plant biomass and species richness (Knapp et al., 2008), increasing fire risk (Mitchley & Ispikoudis, 1999) and enhancing soil erosion (Schlesinger et al., 1990). However, other studies have found positive effects of shrub encroachment on the richness of different organisms and on ecosystem functioning (see Eldridge et al., 2011 for a review). Maestre et al. (2009) hypothesized that the functional traits of encroaching shrubs relative to those of the grasses being replaced are key determinants of the outcomes of shrub encroachment. Size-related traits of shrub species might be particularly important, as the replacement of grass species by tall and large shrubs (i.e. sprouting shrubs) enhances species richness and ecosystem functions such as nutrient/ carbon (C) cycling and storage (Eldridge et al., 2011; Quero et al., 2013).

Climate change has been projected to increase aridity in drylands worldwide during this century (Feng & Fu, 2013). This can modify the traits of dominant shrub species, as well as the FD within communities (Gross et al., 2013), because aridity generally favors small stress-tolerant and slow-growing shrub species with particular leaf traits, for example, thick evergreen leaves with low specific leaf area (SLA) and high leaf dry matter content (Ackerly et al., 2002). However, these species can be replaced in the most arid Mediterranean ecosystems by stress-avoidant species characterized by summer deciduous leaves and an opposite trait strategy (Ackerly et al., 2002; Gross et al., 2013).

Changes in leaf trait values may have important consequences on ecosystem functioning, as they determine the rate of resource capture and utilization (Garnier et al., 2004) as well as litter decomposition (Kazakou et al., 2006). Also, increasing aridity may select for small shrub species (Gross et al., 2013) and limit the ability of tall sprouting shrubs to enhance multifunctionality. Finally, increasing aridity may also alter multifunctionality by modifying the FD within drylands (Gross et al., 2013), because a positive effect of species diversity on multifunctionality has been found in global drylands (Maestre et al., 2012a), and high FD has been hypothesized to improve the resistance of dryland ecosystems to aridity (Volaire et al., 2014); this is the case because FD could increase the probability that some species will survive if environmental conditions change, and thus could maintain ecosystem functioning (Díaz & Cabido, 2001).

In this paper, we evaluated how aridity and shrub encroachment affect the functional structure of Mediterranean drylands, and assessed how changes in their functional structure ultimately drive variations in multifunctionality. We also quantified the relative contribution of mass ratio (reflected by CWM) vs niche complementarity (reflected by FD) processes on multifunctionality for multiple traits (size and leaf traits) using a confirmatory path analysis (Shipley, 2013; Fig. 1). We tested the following hypotheses: mass ratio and niche complementarity processes are important drivers of multifunctionality (Mouillot et al., 2011); high FD will improve multifunctionality (Mouillot et al., 2011); high FD will minimize the negative effects of aridity on multifunctionality (Cardinale et al., 2012; Maestre et al., 2012a); and the effects of aridity on multifunctionality will be modulated by the traits of shrubs which determine the outcome of shrub encroachments.
Materials and Methods

Study area

We surveyed 45 sites along an aridity gradient from central to southeast Spain (Supporting Information Fig. S1). Mean annual precipitation and temperature along this gradient ranged from 294 to 479 mm and from 12 to 18°C, respectively. Aridity (1 – aridity index; precipitation/potential evapotranspiration; Delgadillo-Baquerizo et al., 2013) values range from 0.57 to 0.76, and are strongly correlated to both annual mean precipitation ($R^2 = 0.97$) and temperature ($R^2 = 0.89$) in the studied sites. Climatic data were extracted from the WorldClim global database (Hijmans et al., 2005), while data to calculate the aridity index were obtained from Trabucco & Zomer (2009). All the studied sites were located on south-facing slopes, with slope values ranging from 1 to 22° (measured in situ with a clinometer), and had soils derived from limestone (Lithic Calciorthid; Soil Survey Staff, 1994). Vegetation at these sites was either a grassland dominated by Stipa tenacissima or a shrubland dominated by obligate-seeder shrubs such as Rosmarinus officinalis (hereafter nonsprouting shrubs, Fig. S2). Within grasslands and shrublands, we selected sites with and without tall spraying shrubs (such as Quercus coccifera; Fig. S2; Table S1).

Vegetation sampling

We established a 30 m plot at each study site. Total plant cover within each plot was sampled by using four 30 m long transects located 8 m apart from each other, which were extended parallel to the slope. In each transect, the cover of every perennial species in 20 consecutive quadrats (1.5 × 1.5 m) was visually recorded. We focused on perennial plants as they represent most of the plant biomass in drylands (Whitford, 2002), and their cover is a good predictor of ecosystem functioning in these areas (Maestre & Escudero, 2009; García-Gómez & Maestre, 2011; Gaitán et al., 2014). Species abundance per site was calculated as the sum of the cover measured in the 80 quadrats.

At each plot, we measured the traits of all the perennial plant species that accounted for at least 80% of the total plot cover, in decreasing order of relative abundance. These measurements were conducted on 10 randomly selected individuals per species during the peak of the vegetation growth season (spring). We assigned to each species and plot the average value of the individuals measured in that plot. In the case of the species for which we did not have local trait values we used the average trait values observed in the three nearest sites. Ten traits were measured following standardized protocols (Cornelissen et al., 2003): plant architecture traits, including vegetative height (VH, cm), lateral spread (LS, cm²), branching density (BD, number of main stems) and ramification (Br, number of ramifications per stem) (these traits are related to plant water-use efficiency and/or competitive ability; Westoby et al., 2002); and leaf traits, including leaf area (LA, cm²), leaf length (LL, cm), leaf width (LW, cm) and leaf thickness (LT, mm), all reflecting light interception and water stress tolerance (Westoby et al., 2002), and SLA (cm² g⁻¹) and leaf dry matter content (LDMC, g g⁻¹), which correlate with plant relative growth rate and nutrient acquisition and utilization (Wright et al., 2004).

Soil sampling and analyses

Soil cores (0–7.5 cm depth) were sampled during the peak of the dry season (July–August) under the canopy of five randomly selected S. tenacissima and R. officinalis individuals, and five others in randomly selected open areas devoid of vascular vegetation. In those sites with spraying shrubs, additional soil cores were sampled under the canopy of five randomly selected individuals of these shrubs. Hence, 10 or 15 soil samples, respectively, were collected per site.

Soil samples were sieved by a 2 mm mesh and air-dried for 1 month before laboratory analyses. For each soil sample, the following variables were quantified as described in Maestre et al. (2012a) and Delgado-Baquerizo et al. (2013): organic C, pentoses, hexoses, total nitrogen (N), total available N, amino acids, proteins, net potential mineralization rate, total phosphorus (P), available inorganic P, Olsen P (inorganic P – HCL 1M) and the activities of phosphatase and β-glucosidase. These variables constitute a good proxy for processes such as nutrient cycling, biological productivity, and build-up of nutrient pools, which are important determinants of ecosystem functioning in drylands (Whitford, 2002). Most of these processes are also considered to support ecosystem services, as other types of ecosystem services depend on them (MEA, 2005; Isbell et al., 2011).

Data management

Community trait distribution For each measured trait, we calculated two complementary indices of functional structure: CWM and FD. CWM corresponds to the mean trait value of a community weighted by the relative abundance of each species, and reflects the trait values of the most dominant plant species in a given community. It was calculated with the following equation (Violle et al., 2007):

\[
CWM_j = \sum_{i=1}^{n} p_{ij}T_{ij}
\]

Eqn 1

where p_{ij} is the abundance of the species i in the community j, and T_{ij} is the mean trait value of the species i in the community j.

Functional diversity quantifies the degree of trait dispersion within a community (adapted from Laliberté & Legendre, 2010). Calculated for each trait separately, FD is similar to the variance of the community trait distribution weighted by the relative abundance of each species within the community. It was calculated as:

\[
FD_j = \sum_{i=1}^{n} p_{ij} \left(\frac{|T_{ij} - CWM_j|}{\sum_{i=1}^{n} |T_{ij} - CWM_j|} \right)
\]

Eqn 2

where p_{ij} is the abundance of the species i in the community j, T_{ij} is the mean trait value of the species i in the community j, and
CWM\(_j\) is the community-weighted trait of the community \(j\). High FD values suggest higher complementarity in resource used between species within a given community (Maire et al., 2012).

Multifunctionality index Multifunctionality was estimated from all the soil variables measured using the \(M\) index of Maestre et al. (2012a). To obtain an \(M\)-value for each site, \(Z\)-scores were first calculated for each of the 13 soil variables estimated at the scale of each 30 × 30 m plot surveyed. These estimates were obtained by using a weighted average of the mean values observed in bare ground and vegetated areas, and weighted by their respective cover at each plot (Maestre et al., 2012a). Raw data were normalized before calculations; a square root transformation normalized most of the variables evaluated. Following this, the \(Z\)-scores of the 13 soil variables were averaged to obtain \(M\). This index provides a straightforward and easily interpretable measure of the ability of different communities to sustain multiple ecosystem functions simultaneously (Byrnes et al., 2014). It is also statistically robust (Maestre et al., 2012a), and is being increasingly used when assessing multifunctionality (Quero et al., 2013; Bradford et al., 2014; Pendleton et al., 2014; Wagg et al., 2014). We acknowledge that the use of \(M\) may preclude a detailed analysis of how particular species differ in their importance for different functions (Hector & Bagchi, 2007; Gotelli et al., 2011), and that in this index declines in a particular process/function can theoretically be compensated for by increases in another process/function (something that has been criticized in the past; Gamfeldt et al., 2008). However, we did not find that particular sites with high values of a single or a few functions had consistently low values of other functions (Table S2). Moreover, the relatively large number of variables employed to calculate \(M\) makes it relatively robust to outliers or atypical values. We also acknowledge that having variables that are highly correlated among them could make them somewhat redundant (albeit this also simplifies the interpretation of the values of \(M\)). However, in our dataset, only nine out of the 78 correlations between the soil variables evaluated had \(r\)-values higher than 0.7, suggesting that redundancy is not very high within our data (Table S2). Finally, our estimates of \(M\) are highly related to other multifunctionality indices (Fig. S3). Thus, our results and conclusions are robust to the choice of metric used to estimate multifunctionality.

Statistical analyses

Functional variation between dryland communities We conducted a principal component analysis (PCA) with Varimax rotation using the CWM and FD values of all the traits measured. These analyses were done separately for CWM and FD. We used the PCA coordinates in those components with an eigenvalue > 1 to measure the CWM and the FD of each community. This procedure allowed us to identify the plant strategy spectrum along which traits covary across species and communities (Maire et al., 2012). It has also the advantage to consider only independent variables in further analyses. CWM values were normalized using log transformation before PCA analyses.

Community responses to aridity and shrub encroachment We used a stepAICc procedure (following Grace, 2006) to evaluate the relationship between either CWM or FD (response variables) and aridity, abundance of sprouting shrubs and abundance of nonsprouting shrubs (predictors). As the functional response to aridity is not necessarily linear (Gross et al., 2013), a quadratic term was introduced if needed. The best model was selected based on the Akaike information criterion (AICc; Akaikes, 1973). To evaluate the relative importance of aridity and shrub encroachment as drivers of the functional structure of the studied communities, we conducted a variance decomposition analysis based on the sum of squares of the selected models. Note that we also initially included slope in our models, as it has important effects on water availability in drylands (Gómez-Plaza et al., 2001). However, this variable was not retained in any model based on an AICc model selection (\(P > 0.05\) in all cases, data not shown). Therefore, we removed slope as a predictor in our models because it does not explain additional variation over that explained by aridity and functional structure.

Direct and indirect effects of aridity and shrub encroachment on multifunctionality To test for relationships among CWM, FD, aridity, shrub encroachment, and multifunctionality, we conducted a confirmatory path analysis using a d-sep approach (Shipley, 2009; Laliberté & Tylianakis, 2012). This methodology allows some of the limitations of standard structural equation models to be relaxed, including nonnormal data distribution, nonlinear relationships between variables and small sample sizes (Grace, 2006; Shipley, 2009). The d-sep approach is based on an acyclic graph that depicts the hypothetical relationships and independence claims between variables, where the latter are tested using the \(C\) statistic (see Fig. 1 and Notes S1 for the detailed rationale of our analyses). We tested three main alternative hypotheses, where multifunctionality responses to aridity and shrub encroachment are driven by CWM only (mass ratio hypothesis); FD only (niche complementary hypothesis); and the interplay of mass ratio and niche complementarity processes (combined hypothesis). To simplify the \(a\) priori models used, a stepAICc procedure was first conducted to select the predictors that explained most of the variability found in multifunctionality (see Table S3). When several models were not rejected, we used the AICc procedure adapted for confirmatory path analysis to select the best model (Shipley, 2013). Finally, standardized path coefficients were used to measure the direct, indirect, and total effects of the predictors (Grace & Bollen, 2005).

As multiple traits can potentially act simultaneously on multifunctionality through contrasted mechanisms (e.g. mass ratio and niche complementarity in the case of the combined hypothesis), their respective effects on multifunctionality responses to aridity might be difficult to isolate. Thus, we ran a sensitivity analysis on the best selected model to highlight the relative contribution of multiple traits to the observed multifunctionality in response to...
aridity and shrub encroachments. To do this, we used the parameters of the best model to estimate multifunctionality values along the aridity gradient studied under different scenarios, which were created by manipulating the abundances of nonsprouting and sprouting shrubs. The first scenario considered only the effects of aridity by fixing the abundance of both shrub types at 0%. The second scenario focused on the interplay between aridity and encroachment by nonsprouting shrubs. For this, we fixed the abundance of sprouting shrubs at 0%, and simulated the effects of aridity on nonsprouting shrubs. In the third scenario we simulated the interactive effects of aridity and encroachment by sprouting shrubs. We fixed the abundance of sprouting shrubs at 30% (an average abundance that can be observed along the aridity gradient), and that of nonsprouting shrubs at 0% (to remove their effect from the simulation).

Principal component and stepAICc analyses were carried out using JMP 11 (SAS Institute, Cary, NC, USA); and d-sep analyses were conducted using the lm function in R (R Core Development Team, 2012).

Results

Functional structure of studied communities

The CWM of the studied communities segregated along two PCA components, which accounted for 62% of the total variance found in the data (Fig. 2a; Tables S4a, S5a). The first component (36% of the variance) separated communities according to their leaf trait values (hereafter CWM-leaf trait), with SLA and Br being negatively correlated to LDMC, LL and LA. The first PCA component was negatively correlated with the abundance of nonsprouting shrubs. For this, we fixed the abundance of sprouting shrubs at 0%, and simulated the effects of aridity on nonsprouting shrubs. In the third scenario we simulated the interactive effects of aridity and encroachment by sprouting shrubs. We fixed the abundance of sprouting shrubs at 30% (an average abundance that can be observed along the aridity gradient), and that of nonsprouting shrubs at 0% (to remove their effect from the simulation).

Principal component and stepAICc analyses were carried out using JMP 11 (SAS Institute, Cary, NC, USA); and d-sep analyses were conducted using the lm function in R (R Core Development Team, 2012).

Similarly to what was observed with CWM, the FD of the studied communities was explained by the two first PCA components, which accounted for 55% of the total variance in the data (Fig. 2b; Tables S4b, S5b). The first component (31% of the variance) discriminated communities according to the FD of traits related to plant size (hereafter FD-size trait), such as FD-Br, FD-LS, FD-LW and FD-VH. The second PCA component (24% of the variance) segregated communities according to the FD of leaf traits (hereafter FD-leaf traits), such as FD-SLA, FD-LDMC, and FD-LT.

Community response traits to aridity and shrub encroachment

The abundance of nonsprouting shrubs largely determined CWM-leaf traits (73% of the explained variance; Table 1) and the communities dominated by these species had higher CWM-SLA and -Br, and lower CWM-LDMC, -LL, and -LA. These traits were also significantly impacted by aridity and the abundance of nonsprouting shrubs, although to a lesser extent (8 and 19% of the explained model variance, respectively; Table 1). A quadratic relationship was observed between aridity and CWM-leaf traits (Table 1; Fig. S4). By contrast, CWM-size traits were mostly driven by the abundance of sprouting shrubs (Table 1). Communities with high CWM-size traits were those dominated by tall sprouting shrubs.

The abundance of sprouting shrubs largely impacted FD-size traits (97% of the variance explained), whose values peaked at intermediate values of nonsprouting shrub abundance (Table 1). Finally, variations in FD-leaf traits were driven by the interplay of aridity and shrub abundance (Table 1). A positive quadratic relationship between aridity and FD-leaf traits (r² = 36%) indicated that the FD values of these traits peaked in low and high aridity conditions. Sprouting shrubs tended to have a negative impact on FD-leaf traits (r² = 20%), while nonsprouting shrubs increased FD-leaf traits (r² = 44%).

Fig. 2 Principal component analysis (PCA) of community-weighted mean trait (a) and functional diversity (FD) values (b). Light gray dots represent communities dominated by grass species, while dark gray dots are communities dominated by shrub species. BD, branching density (number of main stems); Br, number of ramifications per stem; LA, leaf area; LDMC, leaf dry matter content; LL, leaf length; LS, lateral spread; LT, leaf thickness; LW, leaf width; SLA, specific leaf area; VH, vegetative height. For each component we indicate the percentage of variance explained. See Supporting Information Table S4(a) for correlations among community-weighted trait values and Table S4(b) for correlations among functional diversity trait values. Furthermore, see Table S5(a) for correlation between community-weighted trait values and two mean components of a PCA (a) and Table S5(b) for the different functional diversity trait values and two mean components of the PCA (b).
Linking community response traits to effect traits on multifunctionality

The model including the combined effects of CWM and FD (combined hypothesis) was the only model not rejected by the data (Fig. 3; Table S6). This model explained 62% of the variation in multifunctionality. Importantly, it highlighted that the effects of shrub encroachment on multifunctionality were mostly indirect via its effects on the functional structure of the plant community (Fig. 4).

While aridity had a direct effect on multifunctionality, it also had a large cascading effect by altering the functional structure of the studied communities. Aridity favored the abundance of nonsprouting shrubs, which resulted in higher values of CWM-leaf traits (Fig. 3). Shifting leaf trait values toward higher SLA had a strong adverse effect on multifunctionality. By contrast, the abundance of sprouting shrubs was independent of aridity. Increasing the abundance of these shrubs changed the value of CWM-size traits towards higher plant height. Such an increase did not directly impact multifunctionality, but had an indirect effect via the changes it promoted in FD (Fig. 3). Increasing the average size of the species in the community augmented the FD of size traits, although it decreased the FD of leaf traits, especially for intermediate values of CWM-size traits (quadratic relationship). It should be noted that communities showing a high variance in size traits were also characterized by high FD values of leaf traits. Increasing FD values of both leaf and size traits generally increased multifunctionality. However, a significant interaction between aridity and FD leaf traits was observed (Fig. 3). This indicates that the effect of these traits on multifunctionality shifted from positive to negative under high aridity conditions. Finally, sprouting and nonsprouting shrubs did not have a direct effect on multifunctionality (Fig. 4), suggesting that all their effects on multifunctionality were explained by the functional traits measured.

Model scenarios

In the sensitivity analyses of our final path model (Fig. 3), scenario 1 modeled the direct effect of aridity on multifunctionality as it had fixed zero abundance of both types of shrubs. In this case, multifunctionality directly decreased with increases in aridity (orange line, Fig. 5). In scenario 2, we modeled the effects of aridity on the abundance of nonsprouting shrubs (significant link in Fig. 3) and its consequences for multifunctionality. Increasing the abundance of nonsprouting shrubs augmented CWM-leaf traits, and strongly decreased multifunctionality, along the aridity gradient (green line, Fig. 5). Finally, in scenario 3 we fixed the abundance of sprouting shrubs to 30% to maintain high values of FD along the aridity gradient and to model its effects on multifunctionality. In this scenario, multifunctionality values remained high for most of the aridity gradient, declining only under high aridity conditions (red line, Fig. 5).

Discussion

Our study represents a first attempt to evaluate how multiple traits mediated dryland multifunctionality responses to two...
major global change drivers, that is, aridity and shrub encroachment. Dryland multifunctionality largely depends on the functional structure of the plant communities. Our results indicate that mass ratio and niche complementarity processes, as reflected by CWM and FD, respectively, were equally important as drivers of multifunctionality responses to both aridity and shrub encroachment (Fig. 3). Specifically, the two key findings from our study are that high FD improved the resistance of multifunctionality with a relative high accuracy. Thus, this set of traits can be particularly helpful to identify when and where shrub species affect multifunctionality positively or negatively, and to clarify the contrasted results previously found in the literature regarding the effects of shrub encroachment on ecosystem functioning (Eldridge et al., 2011).

FD enhances multifunctionality in drylands

Functional diversity within dryland communities improved ecosystem multifunctionality, and accounted for a large fraction of the variation across communities (42% of the effect on multifunctionality; Fig. 4). This result contrasts with studies conducted in more mesic ecosystems, which highlighted the importance of CWM as a driver of ecosystem functioning (Garnier et al., 2004; Diaz et al., 2007; Mokany et al., 2008). However, most studies conducted so far addressing the relationship between FD and ecosystem functioning have considered single ecosystem functions (e.g. productivity (Garnier et al., 2004) or soil C (Laliberté & Tylianakis, 2012); for a review, see De Bello et al., 2010). Our results suggest that FD and the associated niche complementarity might be particularly important when considering multiple ecosystem processes simultaneously (Mouillot et al., 2011).

In temperate ecosystems, the effect of high FD on ecosystem functioning has generally been associated with higher resource acquisition rates (Van Ruijven & Berendse, 2005) and resource-use efficiency (Gross et al., 2007a), temporal niche variability (Maire et al., 2012) and plant soil feedbacks (Van Der Heijden et al., 2008). While future experiments are needed to identify the underlying mechanisms supporting the positive relationship between FD and ecosystem multifunctionality reported here, our results suggest that FD may improve multifunctionality in drylands via two distinct pathways. First, increasing the FD of size traits can lead to regular spatial distributions of plants according to their size (Gross et al., 2013), with tall individuals being
regularly spaced between each other. Such spatial distributions, which are characteristic of dryland communities (Fowler, 1986), can limit runoff and maximize soil infiltration and heterogeneity (Valentín et al., 1999), thus enhancing species diversity (Soliveres et al., 2011) and maximizing plant growth and ecosystem functioning (Puigdefàbregas et al., 1999). Secondly, high leaf trait diversity indicates the occurrence of contrasting leaf strategies (Westoby et al., 2002) commonly found in Mediterranean systems (e.g. stress avoidance vs tolerance; Ackerley et al., 2002; Freschet et al., 2011). Differences in the leaf strategy of co-occurring species may have strong positive effects on ecosystem processes such as productivity (Gross et al., 2007a), C cycling (Milcu et al., 2014) and litter decomposition rates (Bardgett & Shine, 1999; Cornwall et al., 2008). For instance, some studies have shown that increasing the FD of litter positively influences microbial communities (Zak et al., 2003) and litter decomposition rates (Vos et al., 2013), two potentially important factors for maintaining and improving dryland multifunctionality.

Multiple traits mediate the impact of mass ratio processes on multifunctionality

By considering multiple traits, our study showed that the outcomes of shrub encroachment can be explained by size-related and leaf traits. Shrub encroachment by sprouting shrubs species (such as _Quercus coccifera_) had a positive cascading effect on multifunctionality, which was mediated by increasing CWM-size trait values (Fig. 3), in accordance with Maestre et al. (2009). Increasing plant size in dryland communities has been shown to be strongly associated with an increase in FD-size traits locally, and with a high spatial heterogeneity of plant biomass within communities (Gross et al., 2013), two features that can have potential positive effects on ecosystem functioning, as discussed earlier. Maestre et al. (2009) showed how large _Quercus_ species can increase the availability of local soil resources under their canopy in semiarid _S. tenacissima_ grasslands. The positive effects of these shrubs on local resources have been shown to increase species diversity of the whole community (Maestre et al., 2009; Soliveres et al., 2011), an important parameter reinforcing the positive effect of sprouting shrubs on multifunctionality (Quero et al., 2013). Our results complement previous findings by illustrating how sprouting shrubs can enhance FD within dryland communities, ultimately affecting multifunctionality.

The CWM-leaf trait values increased with an increase in the abundance of nonsprouting shrubs (Table 1; Fig. S4). This had a negative impact on multifunctionality, particularly in the most arid part of the gradient. The negative effect of fast-growing species on multifunctionality can be explained by a negative plant soil feedback, as suggested by Garnier et al. (2004). Negative relationships between SLA and soil nutrient contents have previously been found in Mediterranean French grasslands (Garnier et al., 2004) and along successional vegetation stages, where fast-growing species are replaced by slow-growing species (Berendse, 1990). Higher growth and nutrient acquisition rates may accelerate nutrient uptake from the soil (Lavorel & Garnier, 2002). At the same time, plants with higher SLA may produce litter with higher decomposition rates (Kazakou et al., 2006). Together with the reduction of litter accumulation per unit of soil surface, these effects may accelerate nutrient loss at the scale of the whole ecosystem (Garnier et al., 2004). This may be particularly true in the most arid part of the aridity gradient, where the typical characteristics of the semiarid Mediterranean climate are worsened. For instance, the high variability of interannual precipitation distribution promotes increases in water runoff during short periods (Martínez-Mena et al., 2001) and increases soil erosion that might accelerate nutrient loss (Martínez-Mena et al., 2002). In addition, the negative effect of fast-growing summer deciduous species on multifunctionality can be amplified via an effect on FD-size traits (e.g. the negative link between CWM-leaf traits and FD-size traits in Fig. 3). Summer deciduous species with a stress avoidance strategy can outcompete the more stress-tolerant grass and shrub species (Gross et al., 2013) by producing allelopathic compounds (as has been found for species such as _Artemisia herba-alba_, Escudero et al., 2000). Competition between fast- and slow-growing species may decrease the abundance of slow-growing sprouting shrubs and modify the size and spatial distribution of plant biomass within communities (Gross et al., 2013). This situation may decrease the positive effects of sprouting shrubs on FD, accelerating species loss and affecting the functioning of the whole ecosystem (Maestre et al., 2009).

Importance of FD for ecosystem resistance to increasing aridity

The sensitivity analysis allowed us to explore how aridity interacts with plant functional community structure to determine
multifunctionality (Fig. 5). While aridity had a direct detrimental effect on multifunctionality (scenario 1, Fig. 5; Delgado-Baqueiro et al., 2013), this negative effect was further reinforced by the increase in abundance of nonsprouting shrubs, as favored by increasing aridity (scenario 2, Fig. 5). Moreover, we found an interactive effect of aridity and FD-leaf traits on multifunctionality (Fig. 3), suggesting that the effects FD-leaf traits shifted from positive to negative as aridity increased. At low aridity, high FD-leaf traits may reflect the coexistence between fast-growing species characterized by perennial leaves (e.g. Brachypodium retusum), and stress-tolerant shrub or grass species (Frenette-Dussault et al., 2012) that maximized ecosystem multifunctionality. By contrast, under high aridity conditions, the increase in FD-leaf traits observed reflected the increase in abundance of nonsprouting shrubs (see the selection effect in Loreau & Hector, 2001), characterized by the high value of leaf traits (i.e. fast-growing species with summer deciduous leaves; Gross et al., 2013) that may negatively affect ecosystem functioning.

An important result of our study was that high FD (enhanced by the occurrence of sprouting shrubs in grasslands) strongly delayed the collapse of multifunctionality under high aridity conditions. This was suggested by our sensitivity analysis (Fig. 5) where high FD-size traits were generally able to buffer the negative effects of aridity on multifunctionality, hence increasing the ecosystem resistance to aridity. Our results agree with previous experimental studies showing how higher species or FD can improve ecosystem resistance to global change drivers such as climate or land-use changes (Hooper et al., 2005; Ishbell et al., 2011; Cardinale et al., 2012). Understanding how the attributes of biotic communities mediate the resistance of ecosystem structure and functioning to global change drivers is a major focus of current ecological research. By identifying how fundamental attributes of biotic community predict ecosystem multifunctionality, our findings can be particularly useful for developing mechanistic models aiming to predict ecosystem resistance to climate change in drylands, which will increase the degree of aridity experienced by these ecosystems worldwide (Feng & Fu, 2013).

We standardized our sampling design by selecting sites with similar soil, slopes, and aspect (south-facing slopes). Local variation in topo-edaphic conditions could, however, alter plant community structure (Fonseca et al., 2000; Gross et al., 2008) and multifunctionality. For instance, while we did not find any significant effect of slope on multifunctionality, other local factors such as slope, aspect, soil texture or bedrock type could affect water availability (Fonseca et al., 2000; Gómez-Plaza et al., 2001; Delgado-Baqueiro et al., 2013). Evaluating how local topo-edaphic factors interact with climatic/land use factors to determine the functional structure of dryland communities and their effect on multifunctionality is an important research objective for the future.

Concluding remarks
Our work suggests that the functional traits of dominant species and their diversity within communities modulate changes in multifunctionality in Mediterranean ecosystems along gradients of aridity and shrub encroachment. We showed that maintaining and enhancing FD (promoted by sprouting shrubs) in these ecosystems may help to buffer negative effects of climate change on multifunctionality. We also identified key traits that can accurately predict the outcome of shrub encroachment. Our results contribute to resolving the existing debate in the literature on the contrasting effects of shrub encroachment in drylands worldwide (Schlesinger et al., 1990; Maestre et al., 2009). On the one hand, traits related to the size of the plant species reflected the abundance of sprouting shrubs, which positively feed back on multifunctionality via their positive effect of FD. On the other hand, leaf traits such as SLA were related to the abundance of nonsprouting shrubs, which negatively impacted multifunctionality (particularly at the driest part of the aridity gradient studied). These results suggest that high values of SLA may typify those shrub species that are commonly associated with land degradation and desertification in drylands (Eldridge et al., 2011).

Our results can be used to develop specific trait-based management and restoration programs (Sandel et al., 2011; Laughlin, 2014) aiming to buffer the effects of climate change and shrub encroachment on multifunctionality. For instance, reintroducing/favoring the development of plants with low SLA and/or large size, such as sprouting shrubs, and enhancing local FD would reverse or limit the negative effects of increasing aridity and seasonal fast-growing summer deciduous plant species on multifunctionality.

Acknowledgements
We thank M. D. Puche, V. Ochoa, B. Gozalo, M. Delgado-Baqueiro, M. Berdugo, A. Gallardo, and A. Prado-Comesaña for their help with the soil analyses, and four reviewers and the editor for the multiple and constructive comments provided on earlier versions of the manuscript. This research was funded by the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement 242658 (BIOCOM). Y.L.B.P is supported by the project Postdoc USB (reg. no. CZ.1.07/2.3.00/30.0006) realized through the EU Education for Competitiveness Operational Programme and funded by the European Social Fund and the Czech State Budget.

References

Supporting Information

Additional supporting information may be found in the online version of this article.
Fig. S1 Map with the location of the study sites along the aridity gradient evaluated.

Fig. S2 Differences between nonsprouting and sprouting shrubs.

Fig. S3 Relationships between our multifunctionality index (M) based on the average of Z-scores of ecosystem functions and other multifunctionality indices.

Fig. S4 Responses to aridity and shrub encroachment of community-weighted traits (CWM) and functional diversity (FD) evaluated with leaf- and size-related traits.

Table S1 Main characteristics of the study sites

Table S2 Results of Pearson correlation coefficients between the different soil variables (our surrogates of ecosystem functions) used to calculate the multifunctionality index

Table S3 Stepwise procedure to evaluate the responses of community-weighted mean (CWM) and functional diversity (FD) evaluated with leaf- and size-related traits to aridity and shrub encroachment

Table S4 Results of Pearson correlation coefficients among community-weighted trait values and functional diversity (FD) trait values

Table S5 Results of Pearson correlation coefficients between community-weighted (CWM) trait values and two mean components of a principal component analysis (component 1, CWM-leaf traits; component 2, CWM-size traits); and functional diversity (FD) trait values and two mean components of a principal component analysis (component 1, FD-size traits; component 2, FD-leaf traits)

Table S6 Conditional independence tests applied in the different hypothesis of the d-sep model implied by the hypothesized path models

Notes S1 Rationale of the different relationships depicted in Fig. 1.

Please note: Wiley Blackwell are not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing material) should be directed to the New Phytologist Central Office.